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Résumé
Cet article étudie la robustesse d'une économie régionale à un choc exogène tel qu'une
catastrophe naturelle. Il est basé sur une modèle dynamique qui représente une économie
régionale comme un réseau d'unités de production constitué à partir d'une table entrée
sortie sectorielle. Les résultats suggèrent que les pertes de production liées aux catas-
trophes naturelles dépendent de l'hétérogénéité des pertes directes et de la structure du
réseau économique. Deux indices agrégés � la concentration et le regroupement � ap-
paraissent comme déterminants dans la résilience à un choc, o�rant des possibilités de
stratégies d'amélioration de la résilience.
Mots clés : Catastrophe naturelles, Réseaux.
Codes JEL : C63 ; D85 ; L14 ; Q54

Abstract
This article proposes a theoretical framework to investigate economic robustness to exo-
genous shocks such as natural disasters. It is based on a dynamic model that represents a
regional economy as a network of production units through the disaggregation of sector-
scale Input-Output tables. Results suggest that disaster-related output losses depend on
direct losses heterogeneity and on the economic network structure. Two aggregate indexes
� concentration and clustering � appear as important drivers of economic robustness,
o�ering opportunities for robustness-enhancing strategies. Modern industrial organization
seems to reduce short-term robustness in a trade-o� against higher e�ciency in normal
times.
Keywords : Natural disasters, Economic impacts, Economic Network
JEL classi�cation : C63 ; D85 ; L14 ; Q54
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1 Introduction

Recent natural disasters have raised a growing concern about the response of local

economies to large exogenous shocks. Clearly our ability to assess the total long-term

cost of a large scale event, such as the Katrina's landfall, is very poor. Not only is it very

di�cult to evaluate direct losses due to a natural disaster, i.e. the repair or replacement

cost of the assets damaged or destroyed, but it is even more di�cult to evaluate indirect

losses, including the output losses that are the consequence of direct losses.

Output losses are, in part, direct consequences of the disaster and the resulting ca-

pital losses. The recent Icelandic volcano eruption interrupted air transport for a week

e�ectively halting all production in the air transport sector. Similarly, a factory damaged

by a hurricane cannot function until rebuilt or repaired. But output losses are also due to

complex interactions between businesses. In particular, they arise from production bot-

tlenecks through supply-chains of suppliers and producers. For instance, production in

�rms relying on just-in-time imports by plane were perturbed because of the volcanic ash

(e.g., Saltmarsh, 2010). Other examples show how problems in one �rm can have major

impacts on its clients (see, e.g., She�, 2007). These bottlenecks may even be made more

likely by the modern production organization (e.g., production on demand, just-in-time

delivery, small or absence of stocks, limited number of suppliers) that makes each pro-

duction unit more dependent on the ability of its suppliers to produce in due time the

required amount of intermediate goods. The assessment of the cost of these interactions

is all the more di�cult because they are highly variable (from one event to another, from

one region to another) and depend deeply on the economic structure and on the shock

speci�cities. It seems obvious, for instance, that a given amount of damages would have

more serious consequences if concentrated in a key sector (e.g., electricity production and

distribution) than if these damages are spread more homogeneously among sectors.

Sector-scale interactions after disasters have been the topic of intense modeling e�ort

(Rose et al., 1997; Brookshire et al., 1997; Cochrane, 2004; Okuyama, 2004; Okuyama

and Chang, 2004; Rose and Liao, 2005; Hallegatte, 2008). However, in these studies

the economy is described as an ensemble of economic sectors which interact through
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an input-output table. Hallegatte (2008) suggests such representation of the economy

may be insu�cient to model disaster consequences, especially when small businesses are

involved. Business interruptions and production losses due to production bottlenecks

after a disaster can arise from many small-scale mechanisms including supplier failures,

lifeline and transportation perturbations, customers or workers being unable to reach

the production location, or bankruptcy of individual businesses. These mechanisms are

very di�cult to represent at the sector scale and need a much more detailed analysis.

A few authors have investigated this issue using probabilistic approaches (e.g., Haimes

and Jiang, 2001; Anderson et al., 2007), but detailed analysis have been mainly done

for individual supply-chains, not at a macro-economic scale (see, e.g., Chopra and Sodhi,

2004). Ripple-e�ects within economic networks have been the topic of intense research

but this research focuses on credit contagion and systemic risk in the �nancial system

(e.g., Giesecke and Weber, 2006; Nier et al., 2007; Martínez-Jaramillo et al., 2010).

These complex interactions between �rms are likely to be an important source of non-

linearity and a model that does not take them into account is at risk of underestimating

indirect and output losses. For instance it is interesting to note that the 2004 hurricanes

did not have the widespread consequences on Florida's economic system that hurricane

Katrina had in Louisiana. Of course, there were large di�erences between these events :

consequences of the 2004 hurricanes were more limited, were due to wind instead of �ood

and did not involved a large-scale evacuation. But the most important factor was probably

the fact that Katrina a�ected the systemic functioning of Louisiana's and New Orleans'

economies by disrupting the economic system in such a way that even businesses that

did not su�er any damage could not function normally. These disruptions made economic

production almost impossible and therefore lead to an almost complete collapse of the

local economy. By comparison the losses due to the 2004 hurricanes were important but

were spread over a wider area and did not impair Florida's whole economic production

ensuring an easier and more rapid reconstruction.

It seems there is a threshold between the 2004 losses in Florida and the 2005 losses

in New Orleans. In the former case, losses remained below a critical level, did not badly
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a�ect crucial sectors and the economy remained able to function almost normally in spite

of these losses. In the latter case, losses exceeded a critical level, and the economic system

was basically paralyzed by the losses, making the reconstruction very di�cult1. The main

aim of this paper is to provide insights on this threshold and its drivers.

To do so, this article proposes a disaggregated dynamic Input-Output (IO) model in

which the economy is described as a network of interactions between production units

(PU), in line with Delli Gatti et al. (2005); Battiston et al. (2007); Weisbuch and Battis-

ton (2007); Coluzzi et al. (2010). A crucial hypothesis is that prices do not adapt rapidly

after a disaster and do not enable the necessary coordination among PUs to reach a �rst

best production level, equivalent to an economic general equilibrium. As a consequence,

the analysis of production dynamics is done out of equilibrium. The analysis of this

type of dynamics was the topic of Romano� and Levine (1993), who introduced the

Sequential Interindustry Model (SIM) framework to go from the classic static IO model

to the dynamic model (see a more recent application in Okuyama and Chang, 2004).

Our analysis parallels their approach and supplements it by introducing the structure of

the production network in the model, and investigating the consequences on disaster costs.

Section 2 presents the features of our disaggregated input-output model. Results are

given in Section 3, with a sensitivity analysis that highlights which characteristics of

the economic network are most important to assess the robustness to exogenous shocks.

Section 4 concludes and suggests leads for future research.

2 ARIO-network, a model at the production-unit scale

It seems clear from various case studies, (McCarty and Smith, 2005; Tierney, 1997;

Albala-Bertrand, 1993; Boarnet, 1998; Rose et al., 1997; Rose and Liao, 2005; Cho et al.,

2001) that it is necessary to take into account both direct and indirect losses to evaluate

accurately the economic impact of a natural disaster. Indirect losses represent a large
1See an analysis of the link between reconstruction capacity and disaster total cost in Hallegatte et al.

(2007).
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share of total losses (see, Gordon et al., 1998), it has been suggested that they increase

nonlinearly with respect to direct losses (Hallegatte, 2008). Moreover, the understanding

of these nonlinear e�ects would explain why and to what extent regional economies behave

di�erently when they face a disaster : why does the economy sometimes recover rapidly,

while in other cases, like after Katrina, the recovery is slow and needs extensive support ?

The ARIO-network model describes how each PU from each sector uses input from

other PUs to produce goods or services, following an approach comparable with the

SIM approach proposed by Romano� and Levine (1993) but at a �rm level instead of a

sector level. Indeed, this disaggregated model explicitly takes into account the network of

production units in line with Delli Gatti et al. (2005); Battiston et al. (2007); Weisbuch

and Battiston (2007) except our paper innovates in the modeled network built to be

consistent with sector scale regional IO table. The model represents each �rm relying on

regional suppliers and clients ; a decrease in a �rm production can result in ripple e�ects

through chains of suppliers and clients.

In the real world, the extent of these ripple e�ects depends on whether there are

alternative producers elsewhere and on how much time the perturbation lasts. But it also

depends on adjustment mechanisms. For instance, when a supplier is not able to produce

enough, the production of its client does not automatically decrease, because it can adapt

and maintain production : (i) it may be possible for clients to import intermediate goods

from outside the damaged area ; or (ii) clients may �nd an alternative local producer who

is able to produce more than its usual production and replace the failing one ; or (iii)

clients may have enough stock to wait for its suppliers to restore their activity.

Many important mechanisms are disregarded in this �rst attempt to take into ac-

count network e�ect in disaster cost assessment as we focus on the impact on production

systems. We do not model impacts on households with the corresponding e�ect on �nal

demand and labor supply. We consider a closed production system, without imports and

exports. We also disregard the reconstruction process, assuming that production units

are damaged forever. Therefore we investigate how the economic system can adjust to

the de�nitive loss of PUs without trying to reproduce the full dynamics of a disaster.

6



Moreover, we assume PUs do not create new connections in disasters aftermath, i.e. they

do not have access to new clients and suppliers. In other terms, the PU network is consi-

dered �xed over the considered timescales. PU can however adjust their demands to their

various suppliers, increasing their demands on suppliers that are still able to produce.

In spite of its limited scope, this model already provides interesting insights on the

in�uence of the network structure on economic robustness.

2.1 A disaggregated model of the production system

As in Hallegatte (2008), the aim of this work is to take into account limited production

capacities and both forward and backward ripple-e�ects within the economic system. But

here we focus on the role of the economic networks, representing the economy as a set of

interconnected production units. In Hallegatte (2008), the economy was modeled as a set

of homogeneous economic sectors. This assumption is equivalent to a very special case

of our PUs network structure in which all PUs interact with every other PU ; we refer

to this special-case network as the �full network� in the following article. In addition,

contrary to Hallegatte (2008), we focus on the impact of the shock and assume that no

reconstruction is taking place. We also introduce the role of inventories in the production

process.

In this model, like in Battiston et al. (2007), we represent the independent behavior of

each PU. Each PU acts according (i) to demand, depending on orders it receives from its

clients ; (ii) to input availability depending on supplier production and inventory levels ;

and (iii) to its own internal production constraints.

We assume that P is the vector of outputs of the di�erent PUs and A is the PU-IO

matrix, i.e. the matrix that describes the quantity each PU is purchasing from other

PUs to produce one unit of good. As already stated, we do not model here households or

reconstruction and assume that �nal demand is not impacted by the disaster and remains

constant.

The production is used to satisfy demand of intermediate goods and �nal demand. At
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equilibrium, the production of PU i is given by :

Pi =
∑

j

A(j, i)Pj + Ci (1)

Where A(j, i) is the amount of good from PU i needed by PU j in order to produce one

unit of good and Ci is the �nal demand adressed to PU i. The equilibrium equation is

then :

P = A
′
P + C (2)

Where C is the vector of �nal demands and P the equilibrium production. Classically,

the optimal production is :

P 0 = (I − A
′
)−1C (3)

P 0 would be the production if the production capacities were not bounded and if there

were no inventory. However, in the present model we will consider the production capacity

of each PU (Of course, a PU cannot produce more than what it has been designed to

produce) and the impact of inventories and input availability on demands.

2.1.1 Inventories and demand model

We de�ne Di(t), as the total demand to the ith PU at the time t. This demand consists

of �nal demand and of PU-to-PU demand (i.e. intermediate consumption demand). The

PUs produce commodities by drawing from their commodity inventories. They then have

to order new inputs to their suppliers in order to restore their inventories. The inventory

level at the end of each time step is used to determine the demand to suppliers.

We assume that the ith PU has an inventory S(i, s) of the commodity s, produced by

PUs from sector s. The demand from the ith PU to the jth PU, belonging to i's suppliers2

and producing commodity s, is designed to restore the inventory S(i, s) to a level equal to

a given number of days nopt
i,s of intermediate consumption, at the production level needed

to satisfy total demand. As an example, consider an automobile factory having a stock of
2Of course, if A(i, j) = 0, then if the PU i is not a client of the PU j and the demand from PU i to

PU j is nil.
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tires allowing for 10 days of production at the pre-event production pace. If the demand

to this plant increases by 10 percent, the plant will increase its stock of tires, so it will

still have a stock of tires allowing for 10 days of production at the pace needed to satisfy

this increased demand. The target stock of tires, therefore, will also be increased by 10

percent.

The orders O(i, j) from the ith PU to the jth PU, when the PU i has enough stock of

commodity s to produce exactly Di(t− 1) during ni,s days, reads3 :

O(i, j) = A(i, j)Di(t− 1) +
A(i, j)Di(t− 1)

τni,s

(
nopt

i,s − ni,s

)
(4)

Where Di(t − 1) is the demand directed toward the PU i (by all its clients) at the

previous time step4, in line with Romano� and Levine (1993). To produce one unit of

good, the PU i needs an amount A(i, j) of inputs from the PU j. So, the �rst term of

the right-hand side of Eq. (4), A(i, j)Di(t− 1), is the amount of commodity needed by

the ith PU to satisfy the demand at the previous time step Di(t − 1). The second term

of the RHS of Eq. (4) represents the orders that make the inventory converge toward

its equilibrium value, i.e. toward nopt
i,s days of consumption. Whenever the total stock of

commodity s is not enough to produce Di(t−1) during nopt
i,s days, i.e. whenever ni,s < nopt

i,s ,

this term is positive and decreasing with S(i, s). The term τni,s is a characteristic time

of the inventory restoration. If ni,s is large, it is not urgent to restore inventories. In the

following, we assume that τ = 1.

This modeling provides the total demand directed toward each PU j at the time step

t, by adding all demands from individual PUs, plus �nal demand Cj
5 :

Dj(t) = Cj +
∑

i

O(i, j) (5)

3In this equation and in the following ones, A(i, j), O(i, j), ni,s and S(i, s) depend on the time step
t, but we omit it for simplicity.

4If this demand was larger than the production physical capacity constraint of PU i (P cap
i ) then the

orders are set to produce this maximal production level, i.e. Di(t− 1) = P cap
i in Eq. (4)

5This total demand is equivalent to the desired output of Battiston et al. (2007).
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2.1.2 Production model

Without constraint, each PU j would produce at each time step t the exact level of

demand Dj(t). But production can be lower than demand either (i) because production

capacity is insu�cient ; or because (ii) inventories are insu�cient as a result of the inability

of other PUs to produce enough (forward propagation). The production capacity of each

PU depends on its stock of productive capital (e.g., factory, equipments), and on the

direct damages to the �rm capital (e.g., a �rm that su�er from disaster damages can

produce less).

The capacity and supply constraints are described by the following relationships :

� Limitation by production capacity : independently of its suppliers, the production

capacity P cap
i of the ith PU reads :

P cap
i = P ini

i (1−∆i) (6)

Where P ini
i is the pre-event production of this PU, assumed equal to the normal

production capacity. The variable ∆i is the reduction in productive capacity due

to the disaster, directly because of the disaster (e.g., the volcanic ash case) or

through capital destruction.

� Limitation by supplies : Practically, it is assumed that all PUs have inventories of

the goods or services produced by each of their suppliers, and that production by all

PUs is done using inventories only. Production can thus be limited by insu�cient

inventories. The inventory of commodity s owned by PU i is written S(i, s). In the

pre-event situation, the PU i needs an amount A(i, j) from each PU j to produce

one unit of its commodity. So, it consumes a total amount Atot(i, s) of commodity

s, which is equal to :

Atot(i, s) =
∑

j∈sector s

A(i, j) (7)

As a consequence, with an amount of available inventories S(i, s) for the commodity
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s, the maximum production is limited at :

P s
i (t) =

S(i, s)

Atot(i, s)
(8)

Some commodities, for instance those produced by manufacturing sectors, can be

stocked, while it is almost impossible to stock electricity. As a consequence in a

black-out all PUs depending on electricity will stop producing. On the other hand,

if a PU from the manufacturing sector is damaged its client will have the possibility

to draw from their inventories to produce at least a fraction of their usual production

for a certain period of time. These stocks are measured in number of days of pre-

event consumption by the PU. For instance, an automobile factory may have a stock

of tires allowing it to produce cars during 15 days at the pre-event production pace.

For simplicity, non-stockable goods � like electricity � are modelled assuming their

inventories cannot be larger than what is needed to produce during one day (the

model time step). It means, if electricity is shut down, production in the a�ected

area will stop from the day following.

� Taking into account both production capacity and limited inventories, the maximum

production level of the ith PU is :

Pmax
i (t) = Min (P cap

i (t), Mins (P s
i (t))) (9)

Actual production P a
i is then given by :

P a
i (t) = Min (Pmax

i (t), Di(t)) (10)

The vector P a
i (t) is the vector of actual production by each PU taking into account

the two production constraints6. These constraints then propagate into the economy :

if a �rm proves unable to produce enough to satisfy demand, it will both (i) ration its

clients, and (ii) demand less to its suppliers. These two e�ects, forward and backward

propagations, a�ect the entire economy.
6This actual production is the equivalent of the e�ective output of Battiston et al. (2007).
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2.1.3 Market modeling, rationing scheme and inventory dynamics

When a PU is not able to produce enough to satisfy the demand, in absence of an

optimal price response to restore production�demand equality, producers have to ration

clients. To model this e�ect it is necessary to introduce a rationing scheme.

In our framework, in absence of market equilibrium, demand can be larger than actual

production (in such a case P a
i = Pmax

i , see Eq. (10)) :

Di =
N∑

j=1

O (j, i) + Ci ≥ P a
i

Despite the incompatible demand and supply the actual sales and purchases must be

balanced :

D∗
i =

N∑
j=1

O∗(j, i) + C∗
i = P a

i

Therefore some agents must be rationed. The rationing scheme gives the sales and

purchases of each agent depending on demands and supplies of all the agents. In the

present case, since we are interested in disasters, there is only underproduction and the

suppliers can sell all their production while clients only get a fraction of their demand. We

have assumed that the rationing scheme is a proportional rationing scheme7 (Bénassy,

1984) ; the rationing fraction is equal for each client (PUs and �nal consumers).

O∗(j, i) = O(j, i) ·min

(
1,

D∗
i

P a
i

)
(11)

C∗
i = Ci ·min

(
1,

D∗
i

P a
i

)
(12)

Of course, since all PUs from a sector s produce the same commodity s, if a PU j has

two suppliers from sector s (the PUs i1 and i2) the inventory of commodity s is restored
7The problem of this rationing procedure is than it can theoretically be manipulated : an agent can

declare a higher demand to increase his transactions. In the present study, we assume that PUs declare
their true demand, that is to say the amount of intermediate good they actually need to satisfy their
own demand.
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thanks to orders from j to both i1 and i2. In the model, the actual sales of PU i to PU j

(O∗(j, i)) are those that increase the commodity s inventories of the PU j from one time

step to the next one :

S(j, s)(t + 1) = S(j, s)(t) + ∆t

[ ∑
i∈sector s

O∗(j, i)− Atot(j, s)P
a
j (t)

]
(13)

where ∆t is the model time step, the term O∗
i,j is the increase in inventory thanks

to purchases from supplier i, and the last term is the decrease in inventory due to the

commodity consumption needed to produce the amount P a
j (t).

3 Random economic network

The disaggregated model proposed here is based on a synthetic production-unit input-

output (PU-IO) table, developed from a sector-scale input-output table and from simple

network characteristics (e.g., number of PUs per sector, number of suppliers per PU,

number of clients per PU). Compared with previous works at the �rm level (e.g., Battiston

et al., 2007), the innovation here is that we created a PU-IO table which is consistent

with aggregated IO data at the sector level and with network characteristics chosen in

an ad hoc manner (in absence of data on economic network characteristics).

Many disaggregated tables can be consistent with sector-scale IO table and some

network characteristics. To avoid results to be biased by the choice of a peculiar network

structure, this section presents a method to generate uniformly random matrices and

investigates the model behavior with these di�erent matrices.

3.1 Building the disaggregated IO-Matrix

3.1.1 IO-Matrix features

The initial IO table is the 15-sectors IO table for the U.S., from the Bureau of Econo-

mic Analysis. The sectors are : (1) Agriculture ; (2) Mining and extraction ; (3) Utilities ;

(4) Construction ; (5) Manufacturing ; (6) Wholesale trade ; (7) Retail trade ; (8) Trans-
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portation ; (9) Information ; (10) Finance ; (11) Business services ; (12) Education ; (13)

Arts and food ; (14) Other services ; (15) Government. From this national table, a regional

table for Louisiana has been built, using Gross State Product for Louisiana (see details in

Hallegatte, 2008) and simple assumptions about the proportion of each sector production

exported outside the region.

Building the disaggregated PU-IO table from this sector-scale table requires �rst

knowledge of the number of PUs in each sector or, if the full economy cannot be mode-

led, the proportion of these PUs for each sector relative to the total number. The Census

bureau provides the number of establishments per sector and their size distribution in

Louisiana in 2004 (see www.census.gov). It is assumed that each establishment is a PU.

The proportion of PUs per sector according to these data is given in Tab.1.

TAB1. HERE

Using this information on the relative number of PUs for each sector, we set a number

of PUs for each sector, so that the �nal network is a 500x500 PUs matrix. The sectoral

IO table is then expanded into a PU-IO table, which describes the exchanges between all

PUs of the local economy. Obviously, this PU-IO table is much larger than the sectoral

one. Also, this table contains mostly zeros, since most PUs have no direct relationship

with each other.

It is assumed that all PUs from a given sector produce the same commodity and

have the same size. On the other hand, PUs from di�erent sectors have di�erent sizes

(for instance utility PUs are much larger than retail sector PUs). PUs size cumulative

distribution is plotted in Fig. 1, along with the cumulative distribution of a power law

(parameter 1.2). Even though all PUs from a given sector are identical, the size distri-

bution is heterogeneous because each sector has a di�erent size and includes a di�erent

number of PUs. The size distribution resembles a power law, even though the network

is too small to conclude in a robust manner that the distribution is a power law. This

feature is in line with results from empirical analyses of �rms network (e.g., Fujiwara

and Aoyama, 2010).

FIG1. HERE
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All PUs produce and exchange intermediate consumption goods and services, and

produce �nal consumption goods and services for local demand. As all PUs from a given

sector are identical, they all receive the same quantity of inputs from each sector. However,

they can order this quantity from only one PU or from several PUs from this sector,

depending on the network structure. Similarly, all PUs from a given sector sell the same

quantity of good to each sector. Thus, we impose a constant sum over each column and

line in each block describing the exchanges between each pair of sectors. Since all PUs in

the network need inputs from all sectors, the PUs from the sectors that only include a

few PUs are �hubs�, connected to many other PUs.

We de�ne the PU-IO connection matrix C, which is composed of positive integers and

describes which clients from each sector buys intermediate goods from which suppliers in

each other sector, and in which proportion. The coe�cient Cij is positive if the ith PU

buys goods from the jth PU, and zero otherwise. To generate PU-IO matrices that are

consistent with the sector-scale IO table and our disaggregation assumptions, we need to

generate random graphs in which the size of each PU is �xed as well as the total input

it purchases from each sector and total output it sells to each sector. In other words, we

need to generate matrices such that the sum of the values on each row and column is

�xed within each �sector-to-sector block� describing the exchanges between two sectors.

3.1.2 Generation method

Generating a uniformly randomized set of matrices with speci�c constraints is a

challenging issue, and there is no universal method. For the particular case of matrices

corresponding to a graph with a �xed weighted degree distribution � i.e. with �xed

values of the sum over the lines and columns � one can use the con�guration model

(Newman, 2003). But our case is more complex, since the constraints are not applied to

the entire matrix, but for each block corresponding to sales from a sector to another one.

Moreover, in Section 4, networks with speci�c characteristics will be created (e.g., with

di�erent values of clustering or concentration), and this cannot be accommodated directly

by the con�guration model. We propose an alternative approach which is described below.
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As in the Maslov-Sneppen algorithm (see Maslov and Sneppen (2002), Zlatic et al.

(2009)), the basic idea is to choose random pairs of links and swap their extremities.

Starting from a graph obeying a speci�c weighted degree distribution it is possible to

produce any graph respecting this distribution, with equal probability, by iterating the

following Markov-chain method :

� We draw two random couples of values (i, j) and (i′, j′), such that the PUs i and i′

and the PUs j and j′ are in the same sector (i.e., the couples (i, j) and (i′, j′) are

in the same sector-to-sector block of the matrix) and that coe�cients C(i, j) and

C(i′, j′) are greater than or equal to 1 (i.e. the PU j sells some of its production to

the PU i, and the PU i′ sells some of its production to the PU j′).
� We modify the matrix in the following way :




...
...

... C(i, j) ... C(i, j′) ...

...
...

... C(i′, j) ... C(i′, j′) ...

...
...




−→




...
...

... (C(i, j)− 1) ... (C(i, j′) + 1) ...

...
...

... (C(i′, j) + 1) ... (C(i′, j′)− 1) ...

...
...




In the corresponding graph, this modi�cation is a �link swap�, i.e. an exchange of the

extremities of two links. Each swap is accepted provided that i 6= i
′ , i 6= j

′ , i
′ 6= j

and j 6= j
′ . These conditions ensure that swaps have economic sense (see Vitali and

Battiston (2011))8. For PU i, a swap represents a change of suppliers from a given sector

(if initially C(i, j) = 1 and C(i, j
′
) = 0) or a change in the proportion supplied by two

given suppliers from this sector (if initially C(i, j) > 1 or C(i, j
′
) > 0).

This process does not a�ect the sum of the lines and columns in each sector-to-sector

block of the matrix, therefore respecting our constraints of consistency with the

sector-scale IO table. Moreover, this process imposes a maximum on the number of
8Contrary to Vitali and Battiston (2011), swaps creating multiple links are authorized as the weight

of link (i, j) represents the relative size of supplier j for PU i.
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non-zero components in the matrix, i.e. a maximum number of PU-to-PU connections.

The process yields thus a maximum matrix density, consistent with a reasonable number

of suppliers and clients per PU. In addition, according to Taylor (1980), we know that

this method can generate any weighted and directed matrix satisfying these constraints.

By iterating this procedure, we perform a random walk in this set of matrices : such

a Markov process tends to lose memory of the starting point and to generate random

elements. A description of this procedure in the unweighted directed case can be found

Rao et al. (1996) or Miklós and Podani (2004) ; the statistical uniformity of this process

is discussed in Roberts (2000).

A �aw of this method is that the number of steps necessary to reach an arbitrary

element is unknown. In such situation, the use of experimental criteria is widespread

(e.g., Gkantsidis et al., 2003). In practice, a typical geometric characteristic of the graph

is chosen, and its evolution is measured throughout the process. When the value of the

chosen observable remains stable, the memory of the initial point of the Markov-chain is

considered lost, and the element is supposed random.

3.1.3 Generating random IO matrices

In our case we start from an ad hoc PU-IO connection matrix which has the desired

properties : all nodes from one sector have the same characteristics (i.e. the same quantity

of input from each sector and the same quantity of output to each sector) so that each

block has �xed sums over lines and columns.

We then implement the method described above. We follow the convergence of the

Markov-chain using the number of triangles on the whole matrix to assess whether the

process has reached its steady state and lost memory of the initial matrix. Figure 2

represents the evolution of this measure throughout the randomization process and shows

its stabilization after a certain amount of swaps.

FIG2. HERE

The degree distribution of the generated matrices are plotted in Fig. 3 with the
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cumulative distribution function of a power law (with parameter 2.5). Fujiwara and

Aoyama (2010) �nd that the distribution of the degrees of the Japanese production

network is well �tted by a power law, implying that the network is scale free, like

many large real-world networks. The network we consider here, which represents only a

regional economy and includes only 500 PUs, is too small to conclude rigorously that it

exhibits a power law degree distribution9. However, in-degree, out-degree and undirected

degree distributions resemble power-law distributions consistent with the �ndings of

Fujiwara and Aoyama (2010).

FIG3. HERE

The generated matrices and the corresponding graphs exhibit classical features of

real-world networks :

� They are sparse : the maximum number of weighted links is 7.9% of the total

number of possible links ;

� The degree is heterogeneously distributed, as can be seen on Fig. 3 ;

� The matrices contain a giant connected component which gathers most of the nodes

(all of them in our case), and the distance between two nodes of this component

is of the order of log(N)� which is one of the main characteristic of small-world

networks (Watts and Strogatz, 1998).

In Fig. 3 the degree distribution does not vary much across the 100 random matrices,

this is due to the strong set of constraints on the matrices. Most of the matrices satisfying

this set of constraint exhibit the kind of degree distribution shown in Fig. 3. We cannot

be sure, however, that the real-world network corresponds to the statistically most likely

matrices. As a consequence we investigate di�erent network characteristics in Section 4.

Once such a random matrix has been generated, the corresponding PU-IO matrix is

created by dividing the total amounts of sales and purchases between every two sectors,

from the sectoral IO matrix, by the sum of the oriented weighted links between these two
9Around three decades (or orders of magnitude) of the degree distribution would be necessary to

consider that it is well �tted by a power-law, while our regional economic network has degrees lying
between 24 and 266.
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sectors. This method provides a regional IO matrix at the PU level which is consistent

with : the sector-scale IO table from the Bureau of Economic Analysis ; information on the

number of PUs from the Census Bureau ; and characteristics of real-world �rm networks

identi�ed by Fujiwara and Aoyama (2010).

3.2 Consequence of a speci�c shock

In this section, the consequence of a shock a�ecting two PUs, reducing their production

capacity by 50% are investigated (see Section 2.1.2 and Eq. (6)). At the aggregated level

this shock corresponds to a 10% reduction in mining-sector production capacity.

The economic model was tested with this same shock on a number of random graphs.

Figure 4 represents total production, as a percentage of initial production, from date

0 until 100 days after the shock. This �gure shows how the time path of the decrease

in production and the �nal production of the whole economy is dependent upon the

economic network structure. The aim of this paper is to seek some insights on the role of

this structure.

In order to highlight the role of the disaggregation, the model was also tested using the

�full� PU-IO connection matrix, i.e. the PU-IO connection matrix with ones everywhere.

This matrix structure corresponds to a situation in which all PUs are clients and suppliers

of all PUs, i.e. an economy with maximum redundancy and risk-sharing. This structure

is also the one implicitly assumed in classical aggregated sector-scale IO models.

The dash line of Fig. 4 represents production with this full matrix. Indirect losses

are minor because decrease in sales and demands from the 2 damaged PUs are shared

among all PUs. In sparse PU-IO matrices, each PU relies only on a limited number of

suppliers from each sector and has limited number of clients : if one of these suppliers or

clients is unable to produce, the PU su�ers from a catastrophic decrease in its inputs or

demand. As the economy is out of equilibrium and PUs do not change their suppliers and

clients the shock spreads through the economy. In the case of the full matrix, the shock is

smoothed by the redundancy of suppliers and clients acting as an insurance against the

risk of a shock.
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Our analysis di�ers from many other analyses of network robustness. Indeed, many

real-world networks (like the world wide web or the airlines network) are considered

robust to random attacks but vulnerable to targeted and coordinated attacks (Cohen,

2002, see,). This di�erentiated vulnerability arises from the fact that a few of their nodes

(hubs) have a lot of connections, while most nodes have very few connections. Since a

node can function if it remains connected by at least one link to the rest of the system,

an accident or attack to a node that has few connections has little e�ects on the entire

system. These networks are vulnerable to an attack only if it is targeted against one of

the hubs, and a random accident has little probability to a�ect hubs.

In our model, the network also has large hubs (e.g., the PUs of the utility sector),

but the network is nevertheless vulnerable to random shocks. This vulnerability arises

from the economic model, in which the existence of remaining links between two sectors

is not always su�cient to ensure functioning of the production system. Because of limi-

ted production capacities, one link between two sectors is not enough to maintain the

necessary level of supply to the client sector, contrary to models in which there are no

�ow limits between two nodes. Because of inability of PUs to adapt by creating new links

over the short term, even a shock on a small PU with few connections can have dramatic

consequences on the entire system. This analysis can be compared with the analysis by

Nier et al. (2007) on the impact of connectivity on �nancial stability.

FIG4. HERE

3.3 Sensitivity to the inventory level

This section investigates the impact of initial inventory level on robustness of the

economy. Figure 5 shows response of 100 random matrices to the same shock, but with

di�erent initial inventory levels in each PU (2, 4, 7, and 10 days), except in utility and

transport sectors in which initial inventory levels are only one day. Clearly, increasing

inventories from 2 to 10 days slows down the overall reduction in production and enhances

the robustness to disasters, since inventories make it possible for PUs to keep producing in

immediate disaster aftermath, even if their suppliers are disabled. In the real world, this
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bu�er e�ect leaves more time for PUs to transfer their demand to alternative suppliers

and for recovery and reconstruction to take place. Larger inventories, therefore, decrease

the likelihood of a disaster-related economic collapse.

FIG5. HERE

3.4 Heterogeneity of losses

Modeling disaggregated economy makes it possible to compare disasters with di�erent

patterns and impact distributions. For instance, one can compare a disaster that a�ects

strongly a few producers (e.g., a �ood a�ect only businesses in the �ood plain within

a region) to another one that a�ect all producers of a region, but with more limited

consequences (e.g., a wind storm that a�ect all businesses in a region).

To do so, Fig. 6 shows model simulations of impact on the whole economy of a 10%

reduction in production capacity of the mining and extraction sector, which includes 10

PUs in our model. But this reduction in production capacity a�ects only one PU (which

becomes totally unable to produce) or is distributed among 2, 3, 4, 5 or 8 PUs. In this

last case the 8 a�ected PUs only lose 12.5% of their production capacity and the shock

is much more homogeneous that in the former cases. It is interesting to note the latter

case in which most PUs for a sector are a�ected is implicitly assumed when working at

the sector scale.

The heterogeneity of losses was found to play a central role in the indirect losses. When

direct losses are more homogeneously distributed among PUs from one sector (e.g., lower

right �gure), total losses are drastically lower than when only one PU su�ers all damages

(upper left �gure). More generally, for a �xed amount of direct damages, the total loss of

the economy is decreasing with the number of a�ected PUs. In the present case, the same

amount of losses leads to output reduction (in the 100 days following the shock) lying

between 3% and 98% depending on the heterogeneity of losses. This result suggests that

strongly concentrated disasters (like �oods) may cause larger output losses than �broader�

disasters that a�ect homogenously large regions (like wind storms or heat waves).

It is useful to recall here the extreme assumptions of our model : all the random
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graphs are connected, PUs do not create new supplier or client connections and have

no access to imports in the disaster aftermath, and there is no reconstruction (losses

in production capacity are assumed permanent). In such an extreme situation, when one

PU is totally destroyed, consequences on the entire economy are dramatic and production

eventually collapses. The clients of the a�ected PU cannot shift to alternative suppliers,

their production is therefore reduced and cannot supply fully their clients. The shock

thus spreads through the whole economy until it collapses. The ability of PUs to increase

their demand to their other suppliers (provided that the commercial link pre-existed) is

not su�cient to adapt the economic system to the production interruption : the creation

of new links is necessary. On the other hand, when losses are homogeneously distributed,

each PU su�ers from a limited loss, reduces slightly its production, and total loss is

eventually quite small.

Regardless of modeling caveats, heterogeneity in losses among PUs and the redun-

dancy of suppliers and clients are key parameters to explain robustness of the economy in

our model. Such characteristics of the shock and of the economy cannot be represented

using sector-scale aggregated IO models, justifying our approach. Moreover, it appears

from our simulations that aggregated IO models stand for an especially favourable case

where losses are equally distributed among PUs and where each PU is linked to all other

PUs.

It is also found that the in�uence of the network structure depends on heterogeneity

of losses : the result variance in Fig. 6 is small when few or most PUs are a�ected, and

large when direct losses are distributed among a median number of PUs. When one or

few PUs are a�ected the economy collapses anyway, so the network structure is irrelevant.

When all PUs are a�ected, the model behaves like a sector-scale model and the network

structure is similarly unimportant. However, in intermediate cases the network structure

is important to the assessment of output losses. For instance, when two PUs are a�ected

indirect losses do not have the same magnitude depending on whether the two a�ected

PUs have common clients or not. Indeed, if one PU has two damaged suppliers the overall

e�ect on its production is worse since it has to compensate the loss of two suppliers instead

22



of one by demanding more from remaining ones.

However, the structure of graphs in our sample of 100 random matrices has a relatively

small e�ect on the overall robustness of the economy, especially when compared with

other parameters (e.g., heterogeneity of losses). This is particularly the case when only

one PU su�er from all losses. But the network matrices generated by our method are

only a random subset of all possible matrices. This sample is very small and may not

include low-probability structures that are possible and very di�erent from most likely

ones. There is indeed no reason to believe the real economic network is one of the most

likely ones. To investigate di�erent network structures, an alternative generation process

is suggested in the next section, to investigate networks with �targeted� characteristics.

FIG6. HERE

4 Results on �targeted� network structures

As shown in Section 3.1.3, the networks generated from the random process share some

characteristics which appear to have a high probability of occurrence. To explore low-

probability matrices that may correspond more closely to real-world economic networks

this section investigates speci�c network structures. To do so, it is �rst necessary to build

these speci�c networks.

The speci�c network characteristics investigated here are concentrations (what is the

role of the redundancy in suppliers and clients ?), clustering (what happens if the clients

of a PU are also the suppliers of its suppliers ?) and connectedness between sub-regions

(is it useful to connect with many links di�erent regions ?).

These characteristics are interesting because, in the real world, these parameters can

be related to strategic choices on the organization of local economies. For instance, an

agglomeration in which PUs interact only with their geographic neighbors (which can

be the case in a local economy or with vertical-integration industrial organizations) can

be compared with an agglomeration in which each area is specialized in a particular

economic activity (specialized economy like �nancial districts, or horizontal-integration
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industrial organization). Similarly, the redundancy in suppliers and clients and connecti-

veness between subregions depends on PUs choices ; they may decide to spread risks by

having many suppliers and clients, possibly located in di�erent regions.

To investigate these questions, a method is �rst proposed to produce a sample of ran-

dom matrices with a particular value of concentration or clustering. The next subsection

investigates the links between subregions. The robustness of all produced economic net-

works is then assessed using the same shock, namely a 100% reduction in the production

capacity of one PU in the mining and extraction sector (equivalent to the upper left panel

of Fig. 6).

4.1 Concentration

The rationale behind the analysis of concentration is that redundancy of suppliers and

clients can act as a risk-sharing mechanism against the risk of a shock on a supplier or

client. If each PU relies on very few PUs, any shock cannot be smoothened by redundancy

of suppliers and each PU cannot compensate for the loss of one supplier by increasing

demand on many other ones.

4.1.1 Network building

Concentration seeks to measure reliance of clients on a few suppliers. It is built on

the same principle as the Her�ndahl index :

� We call wij = Mij the weight of a supplier j (from sector Y ) in the supply of a PU

i (from sector X). The sum of all these weights is �xed for all i in sector X :

WiY =
∑
j∈SY

wij

� We then de�ne the sector Y concentration for buyer i as :

hiY =
∑
j∈SY

(
wij

WiY

)2
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� Then the concentration of the bloc (X, Y ) is the weighted sum per buyer :

HXY =

∑
i∈sx

hiY .WiY∑
i∈sx

WiY

� And �nally total concentration will be the weighted sum of all-block concentrations :

H =

∑
(X,Y ) hXY .WXY∑

X,Y WXY

A high concentration index for bloc (X,Y ) indicates that the sector X relies on a

few �rms from sector Y . A high aggregate concentration index indicates that each PU

depends on a few clients and that each sector relies on a few suppliers from all other

sectors. Concentration is also a way to take into account the importance of weights

distribution which has been emphasized in relation to transportation networks by Barrat

et al. (2004).

Creating matrices with high level of concentration can be done with a two-step me-

thod :

� First, as in the production of random matrices, a sequence of link swaps is carried

out, but each swap is made only if it increases value of concentration index H. This

process is carried out until reaching a speci�c value H0 of H.

� Second, an homogenization phase is conducted, with a sequence of random link

swaps, to produce a random graph with a concentration index of H0. For a fuller

description of a standard procedure of homogenization see Tabourier et al. (2010).

Resulting PU-IO matrices have a concentration index ranging from 35% to 70%.

Interestingly, in conjunction with data on real economic networks, the same technique

would allow the construction of PU-IO matrices consistent with sector-scale IO tables

and with observed network characteristics. Figure 7 shows the in-degree distribution for

these PU-IO matrices. We show that targeting the concentration index allows us to reach

matrices with various degree distributions, whereas it would be very unlikely to produce

such matrices with a fully-random process.

FIG7. HERE
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4.1.2 Results

Figure 8 shows the sum of production over the 100 days following the shock, as a

function of the economic-network concentration index. There is a signi�cant correlation

between concentration index and robustness of the economy : the more concentrated the

economy, i.e. the less redundancy in suppliers and clients of each PU, the larger is the

output loss. As expected redundancy in suppliers and clients acts as an insurance against

risks, increasing overall economic robustness.

This result remains valid for random shocks, even though the network includes well-

connected hubs and weakly-connected PUs. This contradicts the idea that such networks

would have a limited vulnerability to random shocks (and a high vulnerability to targeted

attacks). As already stated, this di�erence arises from the fact that maintaining one link

between two PUs or two sectors is not su�cient in our model to maintain production

level, because of the limited production capacity in remaining PUs. In practice, in our

model, the existence of hubs increases vulnerability because as soon as one of these hubs is

a�ected (and it happens at one point because the graph is connected), the shock spreads

rapidly across all sectors.

FIG8. HERE

4.2 Clustering

The clustering index can be understood as an index of geographical interactions bet-

ween PUs (see Barthélemy (2003) for instance). Indeed, a high clustering index indicates

that a PU's suppliers' suppliers are likely to also be its clients ; this is consistent with

a �localized� economy, in which clients and suppliers are in the vicinity, compared to a

�specialized-globalized� economy. In other words, a high clustering index indicates that

PUs in the same area interact primarily with each other. This type of structure is in-

consistent with agglomerations in which each area is specialized in a given activity (e.g.,

�nancial districts). But most real world social networks exhibit a high clustering coe�-

cient which is related to community formation (see, Watts and Strogatz, 1998; Newman,

2003).

26



4.2.1 Network building

The clustering index used in this study is the �oriented clustering.� It is a generaliza-

tion of the clustering measure, usually de�ned for undirected graph as the ratio

C3 = 3 · ](triangles)
](forks)

i.e. the ratio between the number of triangles (whatever are the sizes of the links) over the

number of �possible� triangles, the factor �3� ensuring the normalization of this quantity.

Here, the following generalization is used :

C3 = 3 · ](oriented triangles :A > B > C > A)

](oriented forksA > B > C)

Figure 9 provides examples of graph with di�erent clustering indices. The left-hand

graph has 2 oriented triangles and 6 oriented forks ; its clustering index is equal to 1.

The middle graph has one oriented triangle, and 4 oriented forks, and its clustering index

is equal to 3/4. The right-hand graph has no oriented triangle is has a clustering index

equal to zero.

FIG9. HERE

FIG10. HERE

Figure 10 shows the in-degree distribution for these PU-IO matrices. As with concen-

tration, targeting the clustering index allows us to reach matrices with di�erent degree

distributions.

4.2.2 Results

The anticipated in�uence of clustering is unclear. On one hand, small groups of PUs

are highly vulnerable to shocks a�ecting one of their members. On the other hand, they

are isolated from disasters a�ecting other groups and there is a �loss containment e�ect�.

Model results are shown in Fig. 11. The correlation between the clustering index and

the robustness is positive and signi�cant. The regression is still valid controlling for the

concentration index indicating that this result is di�erent from the e�ect of concentration

27



on robustness. A high clustering means there are little groups of PUs interacting with

each other, but quite isolated from the rest of the economy. These groups are better

protected against a shock (when the shock occurs outside of their group) than when the

entire sector relies on only a few suppliers.

From these results one can identify two ways of improving economic robustness : an

�isolation� approach in which small groups of PUs interact as little as possible to contain

disaster losses ; and an �insurance� approach in which all PUs are connected to the largest

possible number of PUs, to mitigate the impact of a shock a�ecting one PU.

FIG11. HERE

According to Fujiwara and Aoyama (2010), the global clustering index of the network

of Japanese �rms is very low. According to our model, a low value of the clustering index

induces a limited resilience of the economic system to exogenous shocks.

4.3 Blocks connexions

In order to strengthen the �isolation� hypothesis and investigate role of subregion

connections, an additional set of simulations has been carried out with a 1000x1000 IO

matrix built from the aggregation of two 500x500 matrices representing two subregions.

We have gradually increased the coupling between the two subregions by increasing the

numbers of links between these two subregions at each simulation step, reproducing more

or less integrated subregions.

FIG12. HERE

4.3.1 Network building

First, two random 500x500 matrices C1 and C2 are built following the process descri-

bed in Section 3.1. These two matrices are then aggregated as a block-diagonal matrix,

to obtain a 1000x1000 matrix m. Then, connections between the two diagonal blocks are

introduced in the following way.

We select i ∈ X and j ∈ Y in the subregion 1 such that C1(i, j) > 0, and i
′ ∈ X

and j
′ ∈ Y in the subregion 2 such that C2(i

′
, j

′
) > 0. The ends of these links are then
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swapped :

C(i, j) → m(i, j)− 1

C(i
′
, j

′
) → m(i

′
, j

′
)− 1

C(i, j
′
) → m(i, j

′
) + 1

C(i
′
, j) → m(i

′
, j) + 1

We repeat this procedure until the desired number of links is reached, checking that we

are swapping new links.

4.3.2 Results

The shock is still a 100% loss in the production capacity of one PU from the mining

sector. Results are reproduced in Fig. 13 as a function of the number of connections bet-

ween the two blocks. The process has been conducted for 10 di�erent couples of 500x500

matrices. Each square in the �gure corresponds to the sum of the production of the eco-

nomy over the 100 days that follow the shock. Each line stands for one original couple

of 500x500 matrices, which are connected through an increasing number of links (on the

x axis). When the 1000x1000 matrix is formed by two independent blocks, the total loss

in the economy is exactly the loss of one 500x500 matrix. As the number of connections

increases between the two blocks, the loss becomes larger.

The e�ect on subregion connections is easier to predict : when subregions are connec-

ted, each region becomes vulnerable to shocks a�ecting another region and, since the

number of links does not change, there are no bene�ts from an �insurance� e�ect. Results

con�rm this intuition : not only is the subregion which is not directly a�ected by the

shock but the economy as a whole is worse o� with these connections.

FIG13. HERE
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5 Conclusion

We do not pretend to assess actual output losses with our disaggregated model. Its

assumptions are too simplistic to do so and crucial mechanisms have been left out of

this �rst-step analysis : the ability of producers to create new connections in disaster

aftermath, i.e. to �nd new suppliers or new clients ; the role of imports to replace disabled

regional producers ; the role of reconstruction to restore initial production capacity and

the disaster impact on �nal demand through consumption behavior and investments.

Some of these mechanisms would amplify losses ; some would dampen losses. Overall,

absence of reconstruction and complete rigidity of the economic network are acceptable

assumptions only over very short terms, and lead to a large overestimation of total losses.

However, we claim that our analysis makes a contribution as it justi�es the develop-

ment of a more disaggregated approach to the modelling of economic consequences of

natural disasters, or any other punctual shock to the economy. Indeed, we have showed

classical IO models may be too optimistic as they represent the most favorable case in

which risks and losses are optimally shared among all producers, i.e. a case in which each

�rm is a client and a supplier of all other �rms and in which direct losses are uniformly

distributed among all �rms. In spite of the simpli�cation of our model, the mechanisms

that are identi�ed in our simulations appear important and need to be taken into account.

A disaggregated approach is necessary to evaluate cost ampli�cations due to hetero-

geneity of losses and business interactions within the production network. In particular,

our results indicate that the output losses due to a disaster would depend on interaction

between geographical disaster footprint and economic sector localizations. For equivalent

aggregated losses a localized disaster a�ecting strongly few producers � like a �ood �

would lead to larger short-term output losses than a widespread disaster a�ecting a broad

region with more limited impacts � like a wind storm or a heat wave. The output loss

is also potentially larger if all producers from a sector are located in the same location,

since output losses are larger if many producers from the same sector are a�ected.

Two strategies to improve robustness are suggested by the analysis of various network

structures. The �rst one is an �isolation� strategy, in which many small groups of producers
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are as isolated as possible from all other groups. This strategy increases robustness,

reducing the disaster impact on all groups not directly a�ected. The second strategy is

the �insurance� one, in which producers have as many suppliers and clients as possible

to be able to compensate the loss of one supplier and to limit consequences of the loss of

one client. In addition, larger inventories are logically found to increase robustness, as it

allows producers to keep producing temporarily even when their suppliers are disrupted.

The various strategies can be related to di�erent industrial organizations which appear

to have di�erent robustness. For instance, a �localized� economy, in which groups of clients

and suppliers are located close to each other, seems to be more robust than a �specialized-

globalized� economy in which clients and suppliers are more homogenously spaced. The

modern industrial organization, with few suppliers and small inventories, also seems to

increase vulnerability. It is an open question whether the loss in robustness is more than

compensated for by an increased e�ciency in normal time.

Since the model can reproduce disaster-provoked economic collapses, it may be used

to investigate existence and location of thresholds in terms of disaster losses. For ins-

tance, this approach may be able to discriminate between limited economic consequences

of the 2004 hurricanes in Florida and widespread economic consequences of Katrina in

New Orleans in 2005. It seems that heterogeneity of losses is an essential parameter in the

assessment of the risk of an economic systemic failure. Since �ood losses are more hetero-

geneous than wind losses, it is interesting to note that Katrina was mainly a �ood event

while the 2004 hurricanes caused losses mainly because of high wind. The model remains

too simple to provide stronger statements on this point, and additional developments will

be necessary to go further in this direction.

Finally, network structure appears important to the robustness of the economy.

Beyond the insights on which network structures are more robust than others, the model

can help identify new economic parameters that are not available in statistic data bases

in spite of their potential interest. For example, it would be useful to measure concentra-

tion, clustering and redundancy indexes for actual economic networks. It would make it

possible to use the methods suggested in this paper to generate economic networks that
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are better representations of the real economy.

6 Acknowledgements

The authors want to thank Patrice Dumas, Jean-Yves Grandpeix, Francois Gusdorf,

Nicolas Naville, Jim Hall, Matthew Holmes and three anonymous referees for their useful

comments and suggestions on an earlier version of this article. This research is supported

by the European Community's Seventh Framework Program (FP7/2007-2013) through

the WEATHER project (http ://www.weather-project.eu). The views expressed herein

are those of the authors and do not necessarily re�ect those of the Banque de France.

32



Références

Albala-Bertrand, J., 1993. The political economy of large natural disasters with special

reference to developing countries. Oxford : Clarendon Press.

Anderson, C. W., Santos, J. R., Haimes, Y. Y., 2007. A risk-based input-output me-

thodology for measuring the e�ects of the august 2003 northeast blackout. Economic

Systems Research 19 (2), 183�204.

Barrat, A., Barthélemy, M., Pastor-Satorras, R., Vespignani, A., 2004. The architecture

of complex weighted networks. PNAS 101 (11), 3747�3752.

Barthélemy, M., 2003. Crossover from scale-free to spatial networks. Europhysics Letters

63, 915�921.

Battiston, S., Delli Gatti, D., Gallegati, M., Greenwald, B., Stiglitz, J., 2007. Credit chains

and bankruptcy propagation in production networks. Journal of Economic Dynamics

and Control 31, 2061�2084.

Bénassy, J., 1984. Macroéconomie et Théorie du Déséquilibre. Dunod, Paris, France.

Boarnet, M., 1998. Business losses, transportation and the northridge earthquake. Journal

of Transportation and Statistics 1, 49�63.

Brookshire, D. S., Chang, S. E., Cochrane, H., Olson, R., Rose, A., Steenson, J., 1997.

Direct and indirect economic losses for earthquake damage. Earthquake Spectra 13,

683�701.

Cho, S., Gordon, P., Moore, J., Richardson, H., Shinozuka, M., Chang, S., 2001. Integra-

ting transportation network and regional economic models to estimate the costs of a

large urban earthquake. Journal of Regional Science 41, 39�65.

Chopra, S., Sodhi, M., 2004. Managing risk to avoid supply-chain breakdown. MIT Sloan

Management Review.

33



Cochrane, H., 2004. Economic loss : myth and measurement. Disaster Prevention and

Management 13, 290�296.

Cohen, D., 2002. All the world's a net. New Scientist 174, 24�29.

Coluzzi, B., Ghil, M., Hallegatte, S., Weisbuch, G., Mar. 2010. Boolean delay equations

on networks : An application to economic damage propagation. ArXiv e-prints.

Delli Gatti, D., Di Guilmi, C., Ga�eo, E., Giulioni, G., Gallegati, M., Palestrini, A., 2005.

A new approach to business �uctuations : heterogeneous interacting agents, scaling laws

and �nancial fragility. Journal of Economic Behavior and Organization 56 (4), 489�512.

Fujiwara, Y., Aoyama, H., 2010. Large-scale structure of a nation-wide production net-

work. The European Physical Journal B - Condensed Matter and Complex Systems

77, 565�580, 10.1140/epjb/e2010-00275-2.

Giesecke, K., Weber, S., 2006. Credit contagion and aggregate losses. Journal of Economic

Dynamics and Control 30 (5), 741 � 767.

Gkantsidis, C., Mihail, M., Zegura, E., 2003. The markov chain simulation method for

generating connected power law random graphs. In : Proc. 5th Workshop on Algorithm

Engineering and Experiments (ALENEX).

Gordon, P., Richardson, H., Davis, B., 1998. Transport-related impacts of the Northridge

earthquake. Journal of Transportation and Statistics 1, 21�36.

Haimes, Y., Jiang, P., 2001. Leontie�-based model of risk in complex interconnected

infrastructures. Journal of Infrastructure Systems 7 (1), 1�12.

Hallegatte, S., 2008. An adaptive regional input-output model and its application to the

assessment of the economic cost of Katrina. Risk Analysis 28 (3), 779�799.

Hallegatte, S., Hourcade, J.-C., Dumas, P., 2007. Why economic dynamics matter in

assessing climate change damages : illustration on extreme events. Ecological Economics

62 (2), 330�340.

34



Martínez-Jaramillo, S., Pérez, O. P., Embriz, F. A., Dey, F. L. G., 2010. Systemic risk,

�nancial contagion and �nancial fragility. Journal of Economic Dynamics and Control

34 (11), 2358 � 2374, special Issue : 2008 Annual Risk Management Conference held in

Singapore during June 30 - July 2, 2008.

Maslov, S., Sneppen, K., 2002. Speci�city and stability in topology of protein networks.

Science 296 (5569), 910�913.

McCarty, C., Smith, S., 2005. Florida's 2004 hurricane season : Local e�ects. Florida

Focus, BEBR University of Florida 1.

Miklós, I., Podani, J., 2004. Randomization of presence-absence matrices : comments and

new algorithms. Ecology 85 (1), 86�92.

Newman, M., 2003. The structure and function of complex networks. SIAM review 45 (2),

167�256.

Nier, E., Yang, J., Yorulmazer, T., Alentorn, A., 2007. Network models and �nancial sta-

bility. Journal of Economic Dynamics and Control 31 (6), 2033 � 2060, tenth Workshop

on Economic Heterogeneous Interacting Agents - WEHIA 2005.

Okuyama, Y., 2004. Modeling spatial economic impacts of an earthquake : input-output

approaches. Disaster Prevention and Management 13, 297�306.

Okuyama, Y., Chang, S., 2004. Modeling Spatial and Economic Impacts of Disasters.

Springer.

Rao, A., Jana, R., Bandyopadhyay, S., 1996. A Markov chain Monte Carlo method for

generating random (0, 1)-matrices with given marginals. Sankhy	a : The Indian Journal

of Statistics, Series A, 225�242.

Roberts, J., 2000. Simple methods for simulating sociomatrices with given marginal totals.

Social Networks 22 (3), 273�283.

Romano�, E., Levine, S. H., March 1993. Information, interindustry dynamics, and the

service industries. Environment and Planning A 25 (3), 305�316.

35



Rose, A., Benavides, J., Chang, S. E., Szczesniak, P., Lim., D., 1997. The regional eco-

nomic impact of an earthquake : direct and indirect e�ects of electricity lifeline disrup-

tions. Journal of Regional Science 37, 437�458.

Rose, A., Liao, S.-Y., 2005. Modeling regional economic resilience to disasters : a com-

putable general equilibrium analysis of water service disruptions. Journal of Regional

Science 45, 75�112.

Saltmarsh, M., April 16 2010. Flight chaos sends businesses scrambling. New York Times

201.

She�, Y., 2007. Building a resilient organization. The Bridge - the journal of the National

Academy of Science 37 (1), 30�36.

Tabourier, L., Roth, C., Cointet, J., 2010. Generating constrained random graphs using

multiple edge switches. Arxiv preprint arXiv :1012.3023.

Taylor, R., 1980. Constrained switchings in graphs. Combinatorial Mathematics 8, 314�

336.

Tierney, K., 1997. Business impacts of the northridge earthquake. Journal of Continencies

and Crisis Management 5, 87�97.

Vitali, S., Battiston, S., 2011. Geography versus topology in the european ownership

network. New Journal of Physics 13 (6), 063021.

Watts, D., Strogatz, S., 1998. Collective dynamics of small-world networks. Nature

393 (6684), 440�442.

Weisbuch, G., Battiston, S., 2007. From production networks to geographical economics.

Journal of Economic Behavior and Organization 64 (3-4), 448 � 469.

Zlatic, V., Bianconi, G., Díaz-Guilera, A., Garlaschelli, D., Rao, F., Caldarelli, G., 2009.

On the rich-club e�ect in dense and weighted networks. Eur. Phys. J. B 67 (3), 271�275.

36



0 500 1000 1500 2000 2500 3000 3500
0

0.2

0.4

0.6

0.8

1

PU size (sales)

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty
 P

(k
 ≤

 x
) cdf of PUs size

cdf of a Pareto distribution:
P(k ≤ x) = 1 − cx

−α with α = 1.2

Fig. 1 � Cumulative distribution function of PUs sizes and power law cumulative distri-
bution function with parameter 1.2.
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Fig. 12 � Building of the connected matrix from the two blocks matrix.
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Fig. 13 � Sum of production from date 0 until 100 days after the shock as a fraction of
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Sect. Agric. Min. Util. Constr. Manuf. Whol. Retail. Transp.
Prop. 1.9% 1.9% 0.4% 7.5% 3.8% 5.6% 16.9% 3.8%
Sect. Info. Finance Busi.Serv. Edu.,Health Food,Art Serv. Gov.
Prop. 1.9% 11.2% 11.2% 11.2% 9.4% 9.4% 3.9%

Tab. 1 � The proportion of production units among sectors.
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