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Résumé :

La littérature empirique récente utilisant les modèles vectoriels autoregressifs structurels (VARS)

montre que les chocs de productivité identiÞés au moyen de restrictions de long terme conduisent

à une baisse persistante des heures travaillées. Ce résultat remet en question les modèles RBC

usuels dans lesquels un choc technologique positif engendre une réponse positive des heures. Dans ce

papier, nous estimons et testons un modèle RBC par inférence indirecte sur les fonctions de réponse

des heures aux chocs technologiques et non technologiques. Nous trouvons que ce modèle n�est pas

rejeté par les données et parvient à fournir des réponses dans un modèle VARS estimé sur données

simulées comparables à celles obtenues à partir d�un VARS sur données historiques. De plus, les

chocs technologiques représentent l�essentiel des ßuctuations du produit dans le modèle estimé. Nos

résultats suggèrent qu�il n�est pas nécessaire de spéciÞer un modèle où les heures diminuent aÞn

d�obtenir un modèle VARS engendrant une baisse des heures.

Mots-clés : VARS, restrictions de long terme, modèles RBC, inférence indirecte.

Abstract:

The recent empirical literature that uses Structural Vector Autoregressions (SVAR) has shown that

productivity shocks identiÞed using long�run restrictions lead to a persistent and signiÞcant decline in

hours worked. This evidence calls into question standard RBC models in which a positive technology

shock leads to a rise in hours. In this paper, we estimate and test a standard RBCmodel using Indirect

Inference on impulse responses of hours worked after technology and non-technology shocks. We Þnd

that this model is not rejected by the data and is able to produce impulse responses in SVAR from

simulated data similar to impulse responses in SVAR from actual data. Moreover, technology shocks

represent the main contribution to the variance of the business cycle component of output under the

estimated DSGE model. Our results suggest that we do not necessarily need DSGE models with a

fall in hours to reproduce the results deriving from SVAR models.

Keywords: SVARs, Long�Run Restrictions, RBC models, Indirect Inference

JEL Codes: E24, E32.
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Résumé non technique :

Suivant la stratégie empirique de Blanchard et Quah (1989), Galí (1999) montre que la réponse des

heures à un choc technologique est négative, persistante, et signiÞcativement différente de zéro dans

un modèle VAR structurel (VARS) incluant la productivité du travail et les heures. Plus précisément,

à partir d�une spéciÞcation en différence première des heures (DSVAR), Galí (1999) montre que le

niveau des heures décroît signiÞcativement à court terme pour tous les pays du G7, à l�exception du

Japon. Au contraire, dans le cas d�une spéciÞcation des heures en niveau (LSVAR), Galí et Rabanal

(2004) montrent que la réponse à l�impact des heures devient positive, mais non statistiquement

différente de zéro. Si l�instrument de mesure (c�est-à-dire le VARS avec les heures en différence) est

pris au sérieux, ce résultat constitue une remise en cause d�une partie importante du programme de

recherche sur les ßuctuations agrégées. En effet, comme l�ont souligné Galí et Rabanal (2004), le

modèle RBC usuel est incapable de reproduire cette propriété des heures travaillées, puisque celles-ci

augmentent suite à un choc technologique dans ce type de modèles. Selon Francis et Ramey (2004),

ces résultats empiriques conduisent à rejeter sans ambiguïté le modèle RBC et annoncent la mort de

ce paradigme.

Cependant, les récentes contributions d�Erceg, Guerrieri et Gust (2004) et de Chari, Kehoe et Mc-

Grattan (2004b) remettent en cause la capacité des modèles VARS à mesurer sans biais les effets des

chocs technologiques sur la base de restrictions de long terme. Ces deux articles mettent en garde

contre l�utilisation des modèles VARS en tant qu�une approche indépendante de toute formalisation

théorique. De plus, leurs résultats suggèrent qu�il n�est pas nécessaire de développer des modèles

macroéconomiques où les heures baissent aÞn de reproduire les prédictions des modèles VARS.

Notre méthodologie se démarque de celles adoptées dans ces deux contributions. Premièrement,

les paramètres du modèle sont estimés de telle sorte que les fonctions de réponse estimées sous le

modèle soient aussi proche que possible de celles qu�implique le modèle DSVAR. Plus précisément,

nous recourons à une méthode économétrique originale pour estimer et tester le modèle. Plutôt que

d�utiliser l�approche MDE qui consiste à estimer les paramètres du modèle de façon à faire directe-

ment coïncider les fonctions de réponse théoriques avec celles d�un VARS, nous utilisons l�inférence

indirecte. Le caractère distinctif de cette dernière est de s�appuyer sur un modèle auxiliaire (ou

critère auxiliaire) aÞn d�estimer et de tester un modèle DSGE de façon indirecte. Dans la mesure
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où la spéciÞcation DSVAR de Galí (1999) peut engendrer une réponse des heures à un choc tech-

nologique biaisée à la baisse, c�est précisément le modèle DSVAR que nous utilisons comme modèle

auxiliaire. Deuxièmement, nous introduisons un grand nombre de restrictions suridentiÞantes, ce qui

nous permet de tester formellement la question: Un modèle DSGE avec une baisse des heures est-il

vraiment nécessaire ? Pour répondre à cette question, notre approche économétrique est mise en

oeuvre de la façon suivante. Le modèle DSGE est estimé de façon indirecte de façon à faire coïncider

les réponses des heures issues d�un modèle DSVAR estimé sur données historiques avec celles d�un

modèle DSVAR estimé sur données simulées à partir du modèle DSGE. Un caractéristique intéres-

sante de cette approche indirecte est qu�elle corrige les biais et les distorsions induites par le DSVAR,

si tant est qu�il y en ait.

Dans une première étape, à des Þns illustratives, nous étudions une version expurgée du modèle

DSGE, dans laquelle les réponses des heures peuvent être calculées analytiquement. A partir de

ce modèle simple, nous montrons que la spéciÞcation DSVAR conduit à des estimations biaisées de

la réponse des heures à un choc technologique. Tandis que ces dernières ne réagissent jamais à ce

choc dans le modèle théorique, elles décroissent de façon persistante dans le DSVAR. En sus, le biais

croît avec la variance et la persistance du choc non technologique. Ces résultats montrent qu�une

évaluation quantitative directe d�un modèle DSGE à partir d�un VARS, telle que l�approche MDE,

peut être très trompeuse. Cependant, l�existence même de ce biais nous permet d�estimer de façon

convergente les paramètres du modèle DSGE lorsque nous recourons à une approche indirecte, telle

que l�inférence indirecte.

Dans une seconde étape, nous développons un modèle DSGE plus complet que nous confrontons

formellement aux données. Nous considérons une version simpliÞée du modèle de Kydland et Prescott

(1982), où une seule valeur retardée du loisir affecte l�utilité courante du loisir. Le modèle est complété

par l�introduction d�un choc additionnel qui affecte l�utilité du loisir. Le modèle peut donc être vu

comme appartenant à la première génération des modèles RBC sans frictions. Dans la mise en oeuvre

de notre méthodologie, nous suivons Christiano, Eichenbaum, et Vigfusson (2004), et estimons des

fonctions de réponses dans un DSVAR en utilisant des mesures alternatives de la productivité du

travail et des heures travaillées, toutes sur la période 1948:1-2002:4. Nous estimons ensuite le modèle

RBC par inférence indirecte sur les fonctions de réponse des heures à des chocs technologiques et non
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technologiques. Pour chacune des bases de données retenues, le modèle RBC est capable d�engendrer

des fonctions de réponse très proches de celles obtenues sur les données historiques. Cela signiÞe

ce modèle, dans lequel les heures croissent de façon persistante à la suite d�un choc technologique,

est compatible avec le résultat de Galí, selon lequel un choc technologique identiÞé dans un DSVAR

entraîne une baisse des heures.

Pour parachever notre exercice empirique, nous évaluons les mérites relatifs des spéciÞcations DSVAR

et LSVAR en termes de contenu empirique. Nous montrons que la spéciÞcation DSVAR, bien que

biaisée, emboîte indirectement la spéciÞcation LSVAR, tandis que l�inverse n�est pas vrai. Ce résultat

suggère que l�approche VARS peut être la source de faits stylisés fallacieux.

Non-technical summary:

Following the empirical strategy of Blanchard and Quah (1989), Galí (1999) shows that the response

of hours to a technology shock is persistently and signiÞcantly negative in a Structural Vector Autore-

gression (SVAR) of labor productivity and hours with long�run restrictions. More precisely, resorting

to a difference speciÞcation of hours (DSVAR), Galí (1999) shows that the level of hours signiÞcantly

decreases in the short run in all G7 countries, with the exception of Japan. Conversely, with the level

speciÞcation of hours (LSVAR), Galí and Rabanal (2004) show that the point estimate of the impact

response becomes positive, though very small and not signiÞcantly different from zero. If the mea-

surement device, i.e. the DSVAR model, is taken seriously, this result is really challenging for a large

part of the business cycle research program. Indeed, as pointed out by Galí and Rabanal (2004), the

standard Real Business Cycle (RBC) model cannot reproduce this pattern, as hours worked increase

after a positive technology shock. According to Francis and Ramey (2004), these empirical evidence

reject unambiguously the RBC model and thus foretell the death of this paradigm.

However, recent contributions have questioned the ability of SVAR models to consistently measure

the effect of a technology shock using long�run restrictions, e.g. Erceg, Guerrieri and Gust (2004)

and Chari, Kehoe and McGrattan (2004b). These two papers caution the use of SVARs as a model�

independent approach in order to identify the effect of technology shocks. Moreover, these Þndings

point out that it is not necessary to build macroeconomic models with a fall in hours after a technology

shock so as to reproduce the predictions of a DSVAR model.
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Our methodology departs from theirs in the following ways. First, the model�s parameters are

estimated so that impulse responses from the model are as close as possible to the impulse responses

derived from the DSVAR estimated on actual data. More precisely, we use an original econometric

methodology in order to estimate and test the model. Rather than using the popular Minimum

Distance Estimation (MDE), which consists in estimating directly the structural parameters from

the impulse responses, we use an Indirect Inference approach. The distinctive feature of Indirect

Inference is to use an auxiliary model (or an auxiliary criterion) in order to indirectly estimate and

test a DSGE model. Since the DSVAR speciÞcation used by Galí (1999) can deliver downward-

biased responses of hours following a technology shock, we use precisely this DSVAR model as an

auxiliary model. Second, we introduce a large number of over�identifying restrictions. This allows

us to formally test the hypothesis: Do We Really Need DSGE Models with a Fall in Hours? So

as to answer this question, our econometric approach is implemented as follows. The DSGE model

is estimated indirectly so that the responses derived from an estimated DSVAR on simulated data

from the DSGE model match as closely as possible their empirical counterpart from the DSVAR on

actual data. An attractive feature of this indirect approach is that it allows us to correct for biases

and distortions, if any.

In a Þrst step, so as to illustrate the importance of these points, we start by studying a streamlined

model in which impulse responses can be directly computed. Using this simple model as the DGP,

we show analytically that the DSVAR speciÞcation leads to biased estimated responses of hours

worked. While hours do not respond to a technology shock in the theoretical model, they persistently

decrease in the DSVAR. Moreover, the bias increases with the variance and the persistence of the

non�technology shock. These results show that a direct quantitative evaluation of a DSGE model

from a DSVAR speciÞcation, such as the MDE approach, can be highly misleading. However, the

mere existence of this bias gives us the opportunity to estimate consistently the parameters of a

DSGE model when resorting to an indirect approach such as Indirect Inference.

In a second step, we develop a more reÞned DSGE model which we formally take to the data. We con-

sider a simpliÞed version of the Kydland and Prescott (1982) model, where time non�separabilities

include only one lag in leisure choices. We complement the Kydland and Prescott model by in-

troducing an additional shock which shifts utility over periods. This model can be viewed as an
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�old�fashioned� DSGE model and is thus representative of the Þrst generation of frictionless RBC

models.

In the empirical implementation of our methodology, we follow Christiano, Eichenbaum, and Vig-

fusson (2004), and Þrst estimate impulse responses from DSVAR models using alternative measures

(in logs) of productivity and hours worked with quarterly U.S. data for the period 1948:1-2002:4. We

then estimate the structural parameters of our RBC model using Indirect Inference on the impulse

responses of hours to technology and non�technology shocks. For each dataset, our RBC model is

able to produce impulse responses very close to those obtained from actual data. This means that

our DSGE model in which hours worked persistently increase after a technology shock is consistent

with Galí�s Þndings, i.e. a technology shock in a DSVAR model leads to a fall in hours.

We end our empirical exercise by inspecting the relative merits of LSVAR and DSVAR speciÞcations

in terms of empirical content. We show that the DSVAR speciÞcation, although biased, indirectly

encompasses the LSVAR speciÞcation, while the converse is not true. This result suggests that the

SVAR approach, if taken at face value, can lead to spurious stylized facts.
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Introduction

Following the empirical strategy of Blanchard and Quah (1989), Galí (1999) shows that the response

of hours to a technology shock is persistently and signiÞcantly negative in a Structural Vector Autore-

gression (SVAR) of labor productivity and hours with long�run restrictions. More precisely, resorting

to a difference speciÞcation of hours (DSVAR), Galí (1999) shows that the level of hours signiÞcantly

decreases in the short run in all G7 countries, with the exception of Japan. Galí (2004a) also Þnds

similar qualitative results for the euro area as a whole. Conversely, with the level speciÞcation of

hours1 (LSVAR), Galí and Rabanal (2004) show that the point estimate of the impact response

becomes positive, though very small and not signiÞcantly different from zero. Despite a hump shape,

the response of hours is not signiÞcantly different from zero for each horizon.2 In contrast, the neg-

ative response of hours in the DSVAR speciÞcation appears robust to various detrending methods of

hours (see Galí and Rabanal, 2004) and to the inclusion of additional variables in the VAR model (see

Galí 1999, Francis and Ramey 2004). If the measurement device, i.e. the DSVAR model, is taken

seriously, this result is really challenging for a large part of the business cycle research program.

Indeed, as pointed out by Galí and Rabanal (2004), the standard Real Business Cycle (RBC) model

cannot reproduce this pattern, as hours worked increase after a positive technology shock. According

to Francis and Ramey (2004), these empirical evidence reject unambiguously the RBC model and

thus foretell the death of this paradigm. In light of their results, Galí (1999) and Galí and Rabanal

(2004) suggest to abandon the frictionless approach in favor of models with nominal rigidities (sticky

prices and/or sticky wages3). It is worth noting that ßexible price models are able to reproduce a

fall in hours following a technology shock, but they must include real frictions that deeply alter the

structure of the original RBC model.4

However, recent contributions have questioned the ability of SVAR models to consistently measure

the effect of a technology shock using long�run restrictions. Erceg, Guerrieri and Gust (2004),

1Christiano, Eichenbaum and Vigfusson (2004) argue convicingly that the DSVAR speciÞcation may induce dis-
tortions if hours worked are stationary in level.

2Chari, Kehoe and McGrattan (2004b) Þnd similar results using various US datasets, with the exception of that of
Francis and Ramey (2005).

3Galí and Rabanal (2004) propose a structural model with real frictions and nominal rigidities (the �triple� sticky
model in the words of McGrattan, 2004) that is consistent with these evidence.

4Such frictions include, for example, habit persistence in consumption together with a high level of adjustment costs
on physical capital (see Beaudry and Guay 1996, Boldrin, Christiano and Fisher 2001, Francis and Ramey, 2004).
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using Dynamic Stochastic General Equilibrium (DSGE) models estimated on US data as their Data

Generating Process (DGP), show that the effect of a technology shock on hours worked is not

precisely estimated with SVAR. Moreover, when they adopt a DSVAR speciÞcation, the bias increases

signiÞcantly.5 Chari, Kehoe and McGrattan (2004b) provide similar results. They simulate an RBC

model estimated by Maximum Likelihood on US data with two shocks (a permanent technology

shock and a stationary labor tax shock), as well as measurement errors. They Þnd that the DSVAR

approach leads to a negative response of hours under an RBCmodel in which hours respond positively.

These two papers caution the use of SVARs as a model�independent approach in order to identify

the effect of technology shocks.6 Moreover, these Þndings point out that it is not necessary to build

macroeconomic models with a fall in hours after a technology shock so as to reproduce the predictions

of a DSVAR model. These two papers highlight potential biases induced by long-run restrictions in

VAR models (e.g. small sample biases, lag selection, SVAR speciÞcation). We build on these results

to set up a complementary quantitative approach.

Our methodology departs from theirs in the following ways. First, the model�s parameters are

estimated so that impulse responses from the model are as close as possible to the impulse responses

derived from the DSVAR estimated on actual data. More precisely, we use an original econometric

methodology in order to estimate and test the model. Rather than using the popular Minimum

Distance Estimation7 (MDE), which consists in estimating directly the structural parameters from

the impulse responses, we use an Indirect Inference approach.8 The distinctive feature of Indirect

Inference is to use an auxiliary model (or an auxiliary criterion) in order to indirectly estimate and test

a DSGE model. The empirical strategy adopted in this paper uses the evidence from simulations

experiments in Erceg, Guerrieri and Gust (2004) and Chari, Kehoe and McGrattan (2004b) as a

starting point. Since the DSVAR speciÞcation used by Galí (1999) can deliver downward-biased

responses of hours following a technology shock, we use precisely this DSVAR model as an auxiliary

model. Second, we introduce a large number of over�identifying restrictions. This allows us to

5This is true in the case of an RBC model. However, a Sticky Price/Wage model delivers better results, as the
LSVAR and DSVAR speciÞcations provide a consistent estimate of the true (negative) response of hours.

6See also Cooley and Dwyer (1998) for an early criticism of SVARs. Giannone et al. (2004) show that estimated
SVAR responses are inaccurate, because they do not fully take into account the dynamic factor structure of the
underlying DSGE model.

7This limited information strategy is used by Rotemberg and Woodford (1997), Christiano, Eichenbaum and Evans
(2004), and Altig, Christiano, Eichenbaum and Linde, (2005), among others.

8See Gouriéroux, Monfort and Renault (1993), Gouriéroux and Monfort (1996).
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formally test the hypothesis: Do We Really Need DSGE Models with a Fall in Hours?, i.e. is a

DSGE model in which hours worked increase after a technology shock necessarily incompatible with

the predictions of a DSVAR speciÞcation? So as to test this hypothesis, our econometric approach is

implemented as follows. The DSGE model is estimated indirectly so that the responses derived from

an estimated DSVAR on simulated data from the DSGE model match as closely as possible their

empirical counterpart from the DSVAR on actual data. In formal terms, the responses derived from

an estimated DSVAR on simulated data from the DSGE model deÞne a binding function from which

the parameters of the DSGE can be consistently estimated. An attractive feature of this indirect

approach is that it allows us to correct for biases and distortions, if any. If we keep in mind one of

the main results of Chari, Kehoe and McGrattan (2004b), this means that a model in which hours

worked increase after a technology shock is potentially able to match a DSVAR model in which hours

decrease.

In a Þrst step, so as to illustrate the importance of these points, we start by studying a streamlined

model in which impulse responses can be directly computed. Using this simple model as the DGP,

we show analytically that the DSVAR speciÞcation leads to biased estimated responses of hours

worked. While hours do not respond to a technology shock in the theoretical model, they persistently

decrease in the DSVAR. Moreover, the bias increases with the variance and the persistence of the

non�technology shock. When this shock is highly persistent, adding more lags in the DSVAR does not

allow us to correct for the bias in the estimated response. These results show that a direct quantitative

evaluation of a DSGE model from a DSVAR speciÞcation, such as the MDE approach, can be highly

misleading. However, the mere existence of this bias gives us the opportunity to estimate consistently

the parameters of a DSGE model when resorting to an indirect approach such as Indirect Inference.

In particular, this simple model allows us to characterize analytically the binding function from

which the structural parameters of the underlying DSGE model can be identiÞed and consistently

estimated.

In a second step, we develop a more reÞned DSGE model which we formally take to the data. We con-

sider a simpliÞed version of the Kydland and Prescott (1982) model, where time non�separabilities

include only one lag in leisure choices. We complement the Kydland and Prescott model by in-

troducing an additional shock which shifts utility over periods. This preference shock accounts for
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persistent changes in the marginal rate of substitution between goods and work. Overall, our model

can be viewed as an �old�fashioned� DSGE model and is thus representative of the Þrst generation

of frictionless RBC models. Our concern, implicitly, is to assess �how much� this type of model is

dead. Not that much, according to our quantitative results.

In the empirical implementation of our methodology, we follow Christiano, Eichenbaum, and Vig-

fusson (2004), and Þrst estimate impulse responses from DSVAR models using alternative measures

(in logs) of productivity and hours worked with quarterly U.S. data for the period 1948:1-2002:4. We

then estimate the structural parameters of our RBC model using Indirect Inference on the impulse

responses of hours to technology and non�technology shocks.9. For each dataset, our RBC model is

able to produce impulse responses very close to those obtained from actual data. This means that

our DSGE model in which hours worked persistently increase after a technology shock is consistent

with Galí�s Þndings, i.e. a technology shock in a DSVAR model leads to a fall in hours. Moreover,

from the parameter estimates, we compute the contribution of the two shocks to aggregate ßuctua-

tions. Though under the DSVAR, identiÞed technology shocks explain a tiny portion of the variance

of output and hours (less than 10%), we Þnd that these same shocks are the main source of output

ßuctuations at business cycle frequencies in the estimated RBC model, whereas the preference shock

explains most of the ßuctuations in hours.10 Additionally, the correlation at business cycle frequen-

cies between output and hours conditional on technology shocks only is very strong (more than 75%)

in the estimated RBC model, instead of -0.08 with the DSVAR estimated on actual data. Since the

RBC model matches very well the IRFs of hours in a DSVAR speciÞcation, our results cast serious

doubts on variance decomposition and conditional correlation exercises conducted in SVARs. In par-

ticular, this contradicts the corollary of Galí and Rabanal (2004) that "technology shocks cannot be

a quantitatively important (and, even less, a dominant) source of observed aggregate ßuctuations".

To the contrary, our Þndings are supportive of the claim that technology shocks matter, as argued

by Prescott (1986).

We end our empirical exercise by inspecting the relative merits of LSVAR and DSVAR speciÞcations

in terms of empirical content. We show that the DSVAR speciÞcation, although biased, indirectly

encompasses the LSVAR speciÞcation, while the converse is not true. This result suggests that the

9We also complement these analyses by focussing on the IRFs of output and hours to both type of shocks.
10These results are consistent with Þndings reported by Chari, Kehoe, and McGrattan (2004a).
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SVAR approach, if taken at face value, can lead to spurious stylized facts.

The paper is organized as follows. In a Þrst section, we introduce a simple model that allows us

to clearly show the main sources of distortions with the DSVAR approach. In section 2, we brießy

present our simpliÞed Kydland�Prescott model. The third section is devoted to the exposition of

our econometric methodology. In section 4, we present the data and the results. The last section

concludes.

1 Lessons from a Simple Model

In this introductory example, we consider a simple ßexible prices equilibrium model without capital

accumulation.11 This model is deliberately stylized in order to deliver analytical results when a

DSVAR model is estimated under this DGP. One can argue that the economy is highly stylized, so

we cannot take its quantitative implications seriously. For example, the response of hours following

a technology shock is zero. This is in contradiction with our results from SVARs in section 4

and previous quantitative Þndings.12 This is not problematic for our purpose, as we simply try to

evaluate the ability of SVARs (as a model�free statistical measurement method) to recover the effect

of a technology shock. The zero response of hours to a technology shock should only be considered

as a reference number for the analysis.

1.1 The Model

We consider a ßex price version of the simple model analyzed in Galí (1999). The representative

household seeks to maximize

log(Ct) + χ̄ exp (χt) (1−Nt), χ̄ > 0, (1)

subject to the per period budget constraint

Ct ≤WtNt +Πt. (2)

11Capital accumulation is considered in the next sections. Our main analytical Þndings are not qualitatively altered
in this more general setup (see Erceg, Guerrieri and Gust, 2004, and Chari, Kehoe and McGrattan, 2004b)
12See Christiano, Eichenbaum and Vigfusson (2004), Francis and Ramey (2004), Galí (1999), Galí and Rabanal

(2004).
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The quantity of good consumed in period t is Ct. The variable Nt denotes hours worked, Wt is the

real wage, and Πt represents the proÞt that the household receives from the Þrm. The utility function

is separable, logarithmic in consumption, and following Hansen (1985), linear in leisure, implying

an inÞnite labor supply elasticity. Without loss of generality, the time endowment is set to unity.

Finally, χt is a random variable that shifts utility every periods. This variable is assumed to follow

an AR(1) process

χt = ρχχt−1 + σχεχ,t,

where εχ,t is iid with zero mean and unit variance. As noticed by Galí (2004b), this shock can

be an important source of ßuctuations, as it accounts for persistent shifts in the marginal rate of

substitution between goods and work (see Hall, 1997). Such shifts capture persistent ßuctuations

in labor supply following changes in labor market participation and/or changes in the demographic

structure. Moreover, this preference shock allows us to generate persistence in hours.13 It is worth

noting that our assumption of linear labor supply has no consequence on our results. In what follows,

the formula would be exactly the same, except for a scaling up of the variance of the preference shock

by the square of one plus the inverse of the Frishian labor supply elasticity. The Þrst order conditions

of the household�s problem (1)�(2) yield

χ̄ exp (χt)Ct = Wt.

Consumption is an increasing function of the real wage, whereas it decreases after a positive preference

shock on leisure.

The representative Þrm produces a homogenous good with a technology

Yt = ZtN
α
t ,

where α ∈ (0, 1]. The variable Zt is the aggregate technology, the growth rate of which is assumed
to evolve according to

Zt = Zt−1 exp (σzεz,t),

where εz,t is iid with zero mean and unit variance. The Þrst order condition of the Þrm is

Wt = α
Yt
Nt
.

13Note that this shock is observationally equivalent to a tax on labor income (see Erceg, Guerrieri and Gust, 2004,
and Chari, Kehoe and McGrattan, 2004b). Additionally, it allows us to simply account for other distortions on the
labor market, labelled labor wedges in Chari, Kehoe and McGrattan (2004a).
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From the households and Þrms optimality conditions and market clearing Yt = Ct = ZtN
α
t , the

equilibrium employment is given by Nt = α exp(−χt)/χ̄, and labor productivity is directly deduced
from the production function. Taking logs and without loss of generality ignoring constant terms,

we obtain the following log�linear representation of the economy

nt = −χt, (3)

∆xt = σzεz,t + (1− α)∆χt, (4)

χt = ρχχt−1 + σχεχ,t, (5)

where∆ is the Þrst difference operator and lower case letters represent the logarithms of the associated

variables. In this economy, employment (3) does not react to a technological shock but decreases

after a preference shock. Productivity (4) increases positively and permanently � one�for�one � after

the technological shock. The stationary preference shock (5) has a positive impact effect on labor

productivity, and no long�run effect.

1.2 IdentiÞcation from DSVAR(1)

We use the system (3)�(5) as the DGP. Given the realization of the equilibrium, we seek to eval-

uate the quantitative implications of DSVAR speciÞcations when the econometrician uses long�run

restrictions on labor productivity in order to recover the effect of a technology shock on employ-

ment. Notice that the hours process can be highly persistent and indistinguishable from a unit

root in small sample when ρχ is close to one. Indeed, many studies suggest that hours can display

non�stationarity.14

We consider the identiÞcation and estimation of technology shocks using long�run restrictions in a

DSVAR model. The VAR(1) model to be estimated has the following form

zt = A1zt−1 + εt,

where zt includes the following variables zt = (∆xt,∆nt)
0. In order to get analytical results, we

only consider a VAR(1) model. Despite its simplicity, this assumption allows us to shed light on the

main mechanisms at work during the course of identiÞcation. Increasing the number of lags does

14See Francis and Ramey (2004), Galí and Rabanal (2004) and Galí (2004b) among others.
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not modify the main results, especially when the preference shock is highly serially correlated, i.e.

ρχ ≈ 1. The estimated VARs� parameters and associated IRF allow us to determine the mapping

between the structural parameters and those of the DSVAR, the so-called binding function. We

impose the long�run restriction that only the productivity shocks have a permanent effect on labor

productivity (see subsection 3.1 for more details about the identiÞcation using long�run restrictions).

The following proposition characterizes impulse responses of hours to a technology shock.

Proposition 1 Let η1,t denote the technology shock identiÞed by the DSVAR. When α ∈ (0, 1) and
σz, σχ > 0, the impulse responses of hours worked to a technology shock η1,t in a DSVAR(1) model

under the DSGE model (3)�(5) is given by

∂nt+k
∂η1,t

= − (1− α)σ2χ³
σ2z +

2(1−α)2
3−ρχ σ

2
χ

´1/2 1−
³
ρχ−1
2

´k+1
1 +

1−ρχ
2

.

Proposition 1 shows that the estimated responses of hours in the DSVAR(1) are always negative, at

all horizons. Notice that, in the limit when k →∞, the IRF of hours converges to

−
µ

2

3− ρχ

¶
(1− α)σ2χ³

σ2z +
2(1−α)2
3−ρχ σ

2
χ

´1/2 .
In other words, these responses are downward-biased for any horizon k ≥ 0. Notice that these

results are asymptotic and do not hinge on small sample biases. When the standard error of the

non�technology shock (σχ) increases relative to that of the technology shock (σz) and/or when the

persistence of the non-technology shock (ρχ) increases, the negative response is more pronounced.

Moreover, when the labor share α decreases, the negative response is ampliÞed. Conversely, when

this share tends to one, the response is zero. In this latter case, productivity growth depends only on

the technology shock and the impulse responses of hours are uniformly zero. This simply means that

when productivity growth is an appropriate measure of total factor productivity growth, the DSVAR

speciÞcation permits us to recover the true IRF of hours after a technology shock. Another inter-

esting result concerns the estimated response to a technology shock when hours display persistence.

Proposition 1 states that the persistence of the preference shock χt does not qualitatively affect the

results in the DSVAR speciÞcation. The responses of hours is always negative in the DSVAR(1)
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for any value ρχ ∈ [0, 1]. Note that when hours are non�stationary, the difference speciÞcation of
hours does not allow us to recover the true response of hours. In the limit case ρχ → 1, the impulse

responses at any horizon k ≥ 0 are given by

lim
ρχ→1

∂nt+k
∂η1,t

= −(1− α)σ2χ
¡
σ2z + (1− α)2 σ2χ

¢−1/2
.

The response of hours is asymptotically biased in the DSVAR model even when the preference shock

�thus hours too� follows a random walk. This result can be easily explained, since the preference

shock has a permanent effect on labor productivity when ρχ = 1. In this case, the long run restriction

in the DSVAR model (only the technology shock has a permanent effect) is not correct.

For the sake of simplicity, we considered only a VAR(1) model. The inclusion of further lags will affect

our quantitative results in the DSVAR speciÞcation, because the Þrst difference of hours introduces a

unit root in the moving average of the preference shock, especially when ρχ is close to zero. This point

is illustrated in Figure 1�(a), which reports the responses of hours to a technology shock for various

lags (p = 1, ..., 12) in the DSVAR(p) model when the preference shock is iid. In this case, increasing

the number of lags allows us to weaken the negative response of hours. Except on impact where the

response is always negative, the responses of hours are almost zero. This result does not hold when

the preference shock (and thus hours) is persistent. Figure 1�(b) reports the impulse responses of

hours for various lags when ρχ = 0.98. As this Þgure makes clear, increasing the number of lags has

a very negligible effect. To get a feel for this result, consider the DSGE model when ρχ ≈ 1. In

this case, employment and productivity in Þrst difference are iid and estimated coefficients from any

VAR(p) model would be zero. Thus, the number of lags does not affect the response of hours.

Finally, it is worth noting that despite its simplicity, the identiÞcation of technology shock from the

model possesses some empirical contents. Indeed, the IRFs from the DSVAR model under the DSGE

model roughly match the IRFs from the data, since the response of hours is persistently negative, as

predicted by Proposition 1.

This latter remark suggests another way to evaluate quantitatively business cycle models from a

DSVAR model. Rather than a direct evaluation from impulse responses of hours in DSVAR, as in

the MDE approach, Proposition 1 suggests an indirect approach. To illustrate this point, let us

consider the following simple exercise. Let bψT denote the estimated impact response of hours to a
16



technology shock using a DSVAR(1) speciÞcation with actual data. Following Proposition 1, the

impact response of a DSVAR(1) model estimated under the DSGE model is

ψ(α, σz, ρχ, σχ) = −
(1− α)σ2χ³

σ2z +
2(1−α)2
3−ρχ σ

2
χ

´1/2 .
Assume for simplicity that ρχ = 0 and α and σz are set prior to estimation. One can thus determine

a value of σχ such that the following equality holds

ψ(σχ) = bψT .
The binding function ψ(σχ) offers the opportunity to estimate a value of σχ such that the impact

response in a DSVAR(1) model under the DSGE model matches exactly the impact response in

a DSVAR(1) model estimated on actual data. To illustrate this property, Figure 2 reports the

binding function in the (ψ(σχ), σχ) plane.15 This Þgure illustrates the results of Proposition 1.

When the standard�error of the non�technology shock increases, the negative response of hours in

the DSVAR(1) model is more pronounced. Using the point estimate16 bψT ' −0.27 of Galí and
Rabanal (2004), we can directly deduce the value of σχ such that ψ(σχ) = bψT using the binding
function. In this simple setting, a value σχ ' 0.014 allows us to match the IRFs of a DSVAR model,
while hours in the DSGE model never respond to a technology shock.

The previous example simply shows how to quantitatively investigate the ability of business cycle

models to match impulse responses of hours in DSVAR models. We now introduce an RBC model

in the line of Kydland and Prescott (1982) in order to conduct a quantitative analysis in a canonical

model.

2 A Kydland�Prescott Type Model

We consider a simpliÞed and modiÞed version of the Kydland and Prescott (1982) model. The model

includes two shocks: a random walk productivity shock (Zt) and a stationary preference shock (χt).

We consider that intertemporal leisure choices are not time separable � as in Kydland and Prescott �,

and assume that the service ßows from leisure are a linear function of current and once-lagged leisure
15For illustrative purpose, this Þgure is drawn with α = 0.6 and σz = 0.025.
16See also the subsection 4.1 and Þgure 4.
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choices. More precisely, the intertemporal expected utility function of the representative household

is given by

Et

∞X
i=0

βi
©
log(Ct+i) + χ̄ exp

¡
χt+i

¢
log(L+t+i)

ª
,

where χ̄ > 0, β ∈ (0, 1) denotes the discount factor and Et is the expectation operator conditional on
the information set available as of time t. Ct is the consumption at t and L+t represents the service

ßows from leisure Lt. The latter is assumed to evolve according to the law of motion

L+t = Lt − bLt−1.

This form of the utility function � although simpler � is very similar to that considered by Kydland

and Precott (1982)17. The main difference with Kydland and Precott is the sign of b. Kydland

and Prescott require that b be strictly negative, implying that current and future leisure choices are

intertemporally substitutable. We do not a priori impose this restriction and let the data select b.

As in the simple model, the labor supply Nt ≡ 1 − Lt is subjected to a stochastic shock χt, that
follows a stationary stochastic process

χt = ρχχt−1 + σχεχ,t,

where |ρχ| < 1, σχ > 0, and εχ,t is iid with zero mean and unit variance.

The representative Þrm uses capital Kt and labor Nt to produce the homogeneous Þnal good Yt.

The technology is represented by the following constant returns�to�scale Cobb�Douglas production

function

Yt = K
1−α
t (ZtNt)

α ,

where α ∈ (0, 1). Zt is assumed to follow an exogenous process of the form

log(Zt) = γz + log(Zt−1) + σzεz,t,

where σz > 0 and εz,t is iid with zero mean and unit variance. The constant γz is a drift term in the

random walk process of Zt. The capital stock evolves according to the law of motion

Kt+1 = (1− δ)Kt + It,

17We consider only one lag whereas Kydland and Prescott assume that habits in leisure gradually react to past
leisure choices.
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where δ ∈ (0, 1) is the constant depreciation rate. Finally, the Þnal good can be either consumed or
invested

Yt = Ct + It.

We Þrst apply a stationary�inducing transformation for variables that follow a stochastic trend.

Output, consumption and investment are divided by Zt, and the capital stock is divided by Zt−1. The

approximate solution of the model is computed from a log�linearization of the stationary equilibrium

conditions around the deterministic steady state using the numerical algorithm of Anderson and

Moore (1985).

3 Econometric Methodology

To estimate and evaluate the RBCmodel, we resort to Indirect Inference. In doing so, we depart from

a large strand of the literature that employs a limited information MDE strategy. The idea of the

MDE strategy is to estimate the structural parameters so that the impulse responses of a DSGEmodel

directly match as closely as possible the impulse responses from a SVAR model estimated on actual

data. We do not employ this empirical strategy as we have shown in the introductory example of

subsection 1.2 that the responses estimated from the DSVAR speciÞcation can be severely downward-

biased. Additionally, Chari, Kehoe, and McGrattan (2004b) show that the DSVAR speciÞcation has

trouble recovering the true responses of hours to a technology shock when a DSGE model with

capital accumulation is used as the DGP. In contrast, the principle of Indirect Inference is to use

an auxiliary criterion (or an auxiliary model) in order to estimate the DSGE model�s parameters.

Rather than directly estimating the model using the theoretical impulse responses, we estimate a

DSVAR model on simulated data from the DSGE model and compute the responses of hours using

long�run restrictions. The responses, averaged over simulations, are compared to those obtained

from actual data. The structural parameters are then estimated in order to make the discrepancy

between the two responses as small as possible.

In order to present our econometric approach, we Þrst consider the following VAR(p) model

zt = A1zt−1 + · · ·+Apzt−p + εt, Eεtε
0
t = Σ, (6)

with zt = (∆xt,∆nt)
0, where nt is logged total hours worked per capita and xt is logged labor
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productivity. For the sake of simplifying the exposition, we abstract from constant terms in the

above VAR model. This speciÞcation with hours worked in Þrst difference is used by Galí (1999,

2004a, 2004b), Galí and Rabanal (2004), and Francis and Ramey (2004, 2005). We follow Galí and

Rabanal (2004) and assume that p = 4.

3.1 IdentiÞcation of Impulse Responses

Let us deÞne B (L) = (I2 −A1L− · · ·−ApL
p)−1, so that

zt = B (L) εt,

where I2 is the identity matrix. Now, we assume that the canonical innovations εt are linear combina-

tions of the structural shocks ηt, i.e. εt = Sηt, for some non singular matrix S. As usual, we impose

an orthogonality assumption on the structural shocks which, together with a scale normalization,

implies Eηtη
0
t = I2. This gives us three constraints out of the four needed to completely identify S.

To setup the last identifying constraint, let us deÞne C (L) = B (L)S. Given the ordering of zt, we

simply require that C (1) be lower triangular, so that only technology shocks can affect the long-

run level of labor productivity. This amounts to imposing that C (1) is the Cholesky factor of

B (1)ΣB (1)0. Given consistent estimates of B (1) and Σ, we easily obtain an estimate for C (1).

Retrieving S is then a simple task using the formula S = B (1)−1C (1). The impulse responses are

then deduced from the VMA(∞) representation

zt = B (L)B (1)
−1C (1)ηt (7)

with ηt = (η1,t, η2,t)
0, where η1,t is the identiÞed technology shock, whereas η2,t is the non�technology

one. The standard�errors of the IRFs are computed numerically using the δ-function method.18

3.2 Estimation Method

This section presents the econometric methodology. We partition the model parameters θ into two

groups θ = {θ1,θ2}.
18See appendix B for further details relating to the computation of the impulse response functions as well as their

standard errors.
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The Þrst group, denoted θ1, is composed of χ̄, γz, β, α, and δ, which are calibrated prior to estimation.

The parameter χ̄ is pinned down so that the steady state labor supply amounts to one third of the

time endowment. The growth rate of Zt, γz, is equal to 0.0036. We set β = 1.03
−0.25, which implies

a steady state annualized real interest rate of 3 percent. We set α = 0.60, that implies a steady state

capital�s share in output equal to 40%, as in Cooley and Prescott (1995). Finally, we set δ = 0.025,

which implies an annual rate of depreciation of capital equal to 10 percent.

Given these a priori values, we Þrst check that the impulse responses of hours to a technology shock

are positive. We conduct this exercise for several alternative values of b, since we have no prior on

this parameter. The results of this sensitivity analysis are reported on Figure 3, where we focus

on normalized technology shocks (one percent shocks). This graphic clearly shows that hours never

respond negatively to such a shock. When b < 0, as in Kydland and Prescott (1982), agents are

willing to substitute intertemporally leisure after a technology shock, so as to exploit the increase in

productivity. This implies a substantial response of hours on impact, though a smaller persistence.

To the contrary, when b > 0, the labor supply is complementary in adjacent periods, due to habit

formation. In this case, agents are less willing to increase their labor supply, conducing to a smaller

response of hours on impact and a gradual increase of hours over time.

The second group of model parameters is θ2 = {b, σz, ρχ, σχ}. These four parameters are estimated
using Indirect Inference. The empirical IRFs of hours computed from eq. (7), are used as an

auxiliary criterion to estimate these structural parameters. The DSVAR model is thus considered as

an auxiliary model, that allows us to identify and estimate θ2 through simulations. More precisely, we

consider in a Þrst step the impulse responses of hours to a technology shock ∂nt+k/∂η1,t and a non�

technology shock ∂nt+k/∂η2,t, deduced from (7) for k = 1, ..., h where h is the selected horizon.19

There are two reasons to justify this choice. First, in doing so, we make sure that the model is

estimated in order to match hours ßuctuations generated by these two shocks. Second, this allows us

to overcome possible identiÞcation failures. To see this, assume that we only focus on the responses

of hours to a technology shock. In this case, if the DSVAR model does a good job of identifying

technology shocks, the parameters ρχ and σχ cannot be estimated on this basis.

19In a complementary exercise, we also estimate and test the model using as an indirect criterion the responses of
output and hours to both types of shocks estimated from this DSVAR.
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The estimation method is implemented as follows.

Step 1: We estimate a q-dimensional vector of IRFs, denoted bψT , from actual data, where q denotes
the number of selected impulse responses (horizon × number of selected IRFs).

Step 2: From the model� solution, and given the vector of structural parameters, θ = (θ1,θ2),

and initial conditions on capital, labor and the shocks, S simulated paths for productivity and

employment, denoted exiT (θ), eniT (θ), i = 1, · · · , S, are recursively computed.
Step 3: From these simulations, we estimate a VAR model from the simulated data ezit = (∆exit,∆enit)0,

ezit = eAi
1ezit−1 + · · ·+ eAi

pezit−p + eεit, E�εit�ε
i0
t =

eΣi, i = 1, · · · , S,

with the same number of lags (p = 4) as in the DSVAR on actual data from step 1. We then

compute the associated vector of IRFs, denoted �ψ
i

T (θ) (i = 1, · · · , S) using the exact same long�run
restrictions as in step 1 ezit = eBi (L) eBi (1)−1 eCi (1) eηit,
and we construct their average over simulations

�ψT,S(θ) =
1

S

SX
i=1

�ψ
i

T (θ).

Step 4: An Indirect Inference estimate �θ2,T,S for θ2 minimizes the quadratic form

J(θ2) = g
0
T,SWT gT,S,

where gT,S = (bψT − eψT,S(θ2)) andWT is a symmetric nonnegative matrix deÞning the metric.

Steps 2 to 4 are conducted repeatedly until convergence � i.e. until a value of θ2 that mini-

mizes the objective function is obtained. Let ψ0 denote the pseudo�true value of ψ and θ2,0 the

pseudo�true value of θ2. Under standard regularity conditions,20 for S held Þxed and as T goes to

inÞnity,
√
T (�θ2,T,S − θ2,0) is asymptotically normally distributed, with a covariance matrix equal to

(1 + S−1) (D0
θWTDθ)

−1 where Dθ = ∂gT,S/∂θ2.

20See Gouriéroux, Monfort, and Renault (1993).
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A preliminary consistent estimates of the weighting matrix WT is required for the computation of

�θ2,T,S. It may be directly based on actual data, and corresponds to the inverse of the covariance

matrix of
√
T (bψT − ψ0), which is obtained from step 1. Here, W−1

T is a diagonal matrix with the

sample variances of
√
T (bψT −ψ0) along the diagonal. This choice of weighting matrix ensures that

θ2 is effectively chosen so that eψT,S(θ2) lies as much as possible inside the conÞdence intervals ofbψT .
For the sake of identiÞcation, we impose that the number of IRFs exceeds the number of structural

parameters. This enables us to conduct a global speciÞcation test in the lines of Hansen (1982),

denoted J − stat = TSJ(θ2)/(1 + S), which is asymptotically distributed as a chi�square, with

degrees of freedom equal to the number of over�identifying restrictions (q − dimθ2).

4 Empirical Results

In this section, we present the empirical results obtained with US data. We Þrst document the data

and discuss the impulse responses of hours to technology and non-technology shocks. Second, we

present the estimation results of the structural parameters using Indirect Inference on the DSVAR

speciÞcation. Finally, we investigate the ability of the RBC model to encompass LSVARs and

DSVARs.

4.1 Data and the Responses of Hours

We Þrst present results based on a simple bivariate DSVAR (∆�xt,∆�nt)
0. As in Christiano, Eichen-

baum and Vigfusson (2004), we use alternative measures (in logs) of productivity and hours worked:

(i) non�farm business output divided by non�farm business hours worked, non�farm business hours

worked divided by civilian population over the age of 16 (NFB sector hereafter); (ii) business output

divided by business hours worked, business hours worked divided by civilian population over the age

of 16 (B sector); (iii) real GDP divided by non-farm business hours worked, non-farm business hours

worked divided by civilian population over the age of 16 (mixed NFB sector), and (iv) real GDP

divided by total business hours, business hours worked divided by civilian population over the age of
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16 (mixed B sector). The empirical analysis uses quarterly U.S. data for the period 1948:1-2002:4.

The dataset (i) is that used by Galí and Rabanal (2004) while the dataset (ii) corresponds to the

benchmark dataset of Christiano, Eichenbaum and Vigfusson (2004).

The response of hours worked to a technology shock for each measure of productivity and hours

are qualitatively similar (see Figure 4). For instance, as in Galí (1999), hours worked decrease

signiÞcantly on impact. Moreover, the negative effect appears rather persistent. In the case of NFB

sector data, as noticed by Galí and Rabanal (2004), hours do eventually return to their original level.

Conversely, the response of hours is persistently below zero for the considered horizon for datasets

(ii), (iii) and (iv). Another noticeable difference concerns the conÞdence intervals. For measures (i)

and (ii) (NFB sector and B sector), the negative response is not signiÞcantly different from zero after

two periods, whereas the negative response remains signiÞcant at any horizon for measures (iii) and

(iv). The impulse responses of hours to the non�technology shock21 is persistent and hump�shaped.

Moreover, the response of hours is precisely estimated for each horizon.

4.2 Estimation Results from DSVARs

Apparently, the previous evidence does not support the empirical relevance of standard RBC models,

as they cannot reproduce a persistent and negative response of hours after a transitory technology

shock. We now investigate this issue using the econometric methodology discussed previously. Table

1 reports the estimation results in four cases. Each case is associated to a particular measure of

productivity and hours worked. In each situation, we use a bivariate VAR with a Þrst difference

speciÞcation and four lags. S = 30 simulations were used for a sample size equal to 219 quarters.

Simulated values are redrawn from the same seed values for each function evaluation. In order to

reduce the effect of initial conditions, the simulated samples include 200 initial points which are sub-

sequently discarded in the estimation. The minimization of the simulated criterion function is carried

out using the sequential dynamic programming algorithm provided by the MATLAB Optimization

Toolboox. We Þrst estimate the four structural parameters θ2 = (b, σz, ρχ, σχ) using the responses

of hours to technology and non�technology shock for a horizon equal to 21. We hereby introduce

21More precisely, Þgure 4 reports the responses of hours to a shock without long run effect on labor productivity.
Having in mind our DSGE model, this shock can be viewed as a preference shock that reduces output and hours and
increases labor productivity. In the SVAR literature, this shock is usually interpreted as a negative demand shock.
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2× 21− 4 ≡ 38 over�identifying restrictions. Our estimation results are reported on Table 1.

We Þrst discuss the parameters estimates. The labor supply parameter b is signiÞcantly positive, in-

dicating that labor supply is subject to intertemporal complementarities. This result is in accordance

with previous results of Eichenbaum, Hansen and Singleton (1988), Bover (1991), and Wen (1998).

The estimated value is greater than 0.8 for each dataset and very close to the estimated values in

Eichenbaum, Hansen and Singleton (see Table II, p. 65). Our results clearly suggest that today�s

leisure signiÞcantly reduces leisure services in the subsequent time period. Notice that the estimated

value is very similar in each case, i.e. the same degree of habit persistence in leisure habit allows us

to match different datasets. The estimated value of the standard�error of the technology shock σz is

rather large (0.0256 and 0.0228), when Indirect Inference with DSVARs as auxiliary models is applied

on NFB or B sector data. This partly results from the high volatility of productivity and hours in

these two sectors. However the point estimates are not signiÞcantly different from what would obtain

in simple growth accounting exercises.22 When the data are mixed, the estimated value is similar

to those obtained in previous studies (0.0126 and 0.0137).23 Relatively high values of σz can be

explained by the estimated value of b. When b is positive and large, the responses of hours to any

shock are small on impact and increase gradually with the horizon. This is a direct consequence of

habit in leisure choices that tends to smooth labor supply. The estimated value of the autoregressive

parameter ρχ is not large, especially if we compare it to previous estimates. Our estimations suggest

values between 0.65 and 0.70, whereas Chari, Kehoe and McGrattan report estimated values between

0.94 and 0.97.24 These differing Figures result partly from the speciÞcation of the utility function.

In Chari, Kehoe and McGrattan, the utility function is time separable, so most of the persistence

in the ßuctuations of hours worked is the result of the forcing variable, which consequently requires

a high degree of serial correlation. Conversely, when b > 0 in our Kydland-Prescott type model,

hours can respond more persistently to any transitory shock. This explains that a large value of ρχ

is no longer necessary in order to match the persistence of hours. Finally, the estimated value of

σχ (between 0.025 and 0.034) are similar to what Erceg, Guerrieri and Gust (2004) obtain for their

22In this type of calculation, we Þrst use the calibrated values of δ and a series of aggregate investment (private
investment plus durable goods expenditures) to construct a capital stock series assuming an initial capital-output ratio
of 6. In a second step, using the calibrated value of α, we determine the Solow residual from observed output and
hours and the calculated capital stock. For NFB and B sectors, we obtain, respectively, σz = 0.0169 and σz = 0.0162.
23See, for example, Hansen (1997).
24Erceg, Guerrieri and Gust (2004) calibrate ρχ to 0.95.
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composite Þscal and preference shock.

Table 1 reports the global speciÞcation test statistic (J − stat). For each dataset, the model is not
globally rejected by the data, since the p-values associated to the J-stat are large. This means that

the KP model is consistent with the observed postwar hours ßuctuations. One may argue that the

standard�errors of the responses of hours to a technology shock are so large that the RBC model can

easily match the data. For example, in the case of NFB and B sectors datasets, the response of hours

is not signiÞcantly different from zero after 2 periods. But in the case of mixed datasets, the response

of hours is signiÞcantly different from zero for each horizon and the RBC model still matches the data

very well. Moreover, the four structural parameters are estimated in order to match simultaneously

the responses of hours to technology and non�technology shocks. Since the latter are very precisely

estimated, any departure from the empirical response is highly penalized in the objective function.

Figures 5 to 8 report the IRFs of hours to technology and non�technology shocks under actual data

and the model. These Figures also include the true response of hours in the RBC model. As these

Figures show, the response of hours to a technology shock is always positive. Note that the RBC

model is able to reproduce a hump�shaped positive response of hours, as the maximal response is

obtained after ten periods. The implied response of hours from the DSVAR estimated on simulated

data is negative and does not display a hump�shaped proÞle. These Figures also illustrate the

downward bias implied by the DSVAR speciÞcation. Another interesting quantitative feature of the

RBC model is its ability to display a persistent response of hours to a non�technology shock.

Additionally, we report in Table 1 the variance decomposition for the business cycle components of

output and hours after HP Þltering the series simulated from the estimated RBC model. In each

case, the fraction of the variance of output explained by the technology shock is always close to or

higher than 70%. For instance, it exceeds 85% with NFB sector data. These results are in sharp

contrast with the predictions drawn from the DSVAR estimated on actual data. In this speciÞcation,

the variance of output explained by technology shock is 7%, and it is 5% for hours. The same result

qualitatively applies to B sector data. In this case, the DSVAR attributes a mere 10% of output

variance to technology shocks while the RBC model estimated on this same DSVAR model attributes

84% of output variance to these shocks. These very contrasted results suggest that care should be

taken when interpreting results from DSVAR models. It is worth noting that the preference shock
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explains most of hours ßuctuations (between 75% and 90% of the variance). This is in accordance

with the business cycle accounting exercise of Chari, Kehoe and McGrattan (2004a). Galí and

Rabanal (2004) also compute the correlation between the business cycle components of output and

hours conditional on technology shocks only, as implied by their DSVAR model. This correlation

is very small (−0.08), whereas it is much larger when all the shocks are taken into account (0.88).
They conclude from this exercise that technology shocks cannot be the main source of business cycle

ßuctuations. Once again, our results contradict their Þndings, since the estimated RBC model,

consistent with their DSVAR model, implies a correlation between output and hours at business

cycle frequencies of 83% conditional on technology shocks only.

Finally, one may argue that our results are derived so as to reproduce the dynamic behavior of

hours only, and thus compel us to remain silent on the dynamic behavior of output. To answer this

legitimate concern, we also estimate the RBC model using IRFs of output and hours to both types

of shocks, as implied by the DSVAR of productivity growth and hours growth. As in the previous

estimation, we select an IRF horizon equal to 21, hereby introducing 4×21−4 ≡ 80 over-identifying
restrictions. The impulse response functions are reported on Figure 9. On the right column of

this Þgure, the empirical responses of hours (plain lines) are identical to those previously reported.

In contrast, the simulated and theoretical IRFs differ, since the model has been reestimated. The

left column contains the responses of output to technology shocks (top panel) and non-technology

shocks (bottom panel). As expected, output increases permanently in response to technology shocks.

The non-technology shock, interpreted as a negative demand shock, induces a persistent decline in

output. Since the long-run restrictions in the DSVAR speciÞcation only apply to labor productivity

(as opposed to output) and since hours decline permanently in response to a non-technology shock,

the response of output to this same shock is also characterized by a negative long-run effect. Notice

that the response of output to this shock is very precisely estimated.

The estimation results are reported in the last column of Table 1. All the estimated parameters are

found signiÞcant. Though still implying a strong intertemporal complementarity of the labor supply,

the habit parameter b is somewhat lower than previously estimated. Conversely, the persistence of

the preference shock increases signiÞcantly. Our results suggest lower values for the standard errors

of the structural shocks. Notice also that in this case, the value of σz is consistent with that implied
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by a simple growth accounting exercise.25 The over-identiÞcation test statistic does not reject the

model, with a p-value of rougly 88%. This result was not a priori warranted since the objects to be

matched (e.g. IRFs to non-technology shocks) are very precisely estimated, with narrow conÞdence

bands. The DSVAR estimated on simulated data from the RBC model closely matches the DSVAR

estimated from actual data. In contrast, the true RBC IRFs differ signiÞcantly from those implied

by the DSVAR model. In particular, the response of hours, while positive in the RBC model, is

found persistently negative in the DSVAR model. Using this estimation, we compute once again the

variance of the business cycle components of output and hours explained by the technology shock.

We Þnd that the latter accounts for roughly 82.4% of output and 25.7% of hours, in sharp contrast

with the DSVAR results. Finally, we obtain that the conditional correlation between output and

hours is very large.

4.3 Estimation Results from SVARs

The estimation of impulse responses of hours critically depends on the SVAR speciÞcation. Chris-

tiano, Eichenbaum and Vigfusson (2004) argue that a difference speciÞcation of hours may create

severe distortions in the DSVAR speciÞcation if hours are truly stationary. Using an LSVAR spec-

iÞcation, they obtain a positive and hump�shaped response of hours following a technology shock,

though not precisely estimated (see Chari, Kehoe and Mac Grattan, 2004b). We report in Figure

10, the responses of hours to technology and non�technology shocks in the LSVAR speciÞcation with

NFB sector data. The response to technology shocks is always positive, hump-shaped, but not sig-

niÞcantly different from zero at each horizon. In contrast, the response of hours to a non�technology

shock is persistent and signiÞcant. Notice that in the short-run, there is little difference between

IRFs of hours to a non-technology shock from DSVAR (see Figure 4) or LSVAR speciÞcations (see

Figure 10).

We now investigate the ability of the structural model to replicate such patterns with NFB sector

data. To do this, we conduct three experiments. In the Þrst one, we compute the IRFs of hours in

an LSVAR speciÞcation using the estimations of Table 1 (column NFB sector). This counterfactual

experiment allows us to quantify the ability of the RBC model estimated from a DSVAR to replicate

25See footnote 22, as well as Erceg, Guerrieri, and Gust (2004).
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the impulse responses obtained from the LSVAR speciÞcation. This exercise can be viewed as an

indirect assessment of the ability of a DSVAR speciÞcation to encompass an LSVAR speciÞcation. In

the second experiment, we estimate the RBC model using the responses of hours to technology and

non�technology shocks obtained in an LSVAR speciÞcation. We also compute the IRF of hours in a

DSVAR speciÞcation under the estimated RBC model. Finally, in a third experiment, we estimate

the four structural parameters in order to match simultaneously the impulse responses of hours in

DSVAR and LSVAR speciÞcations.

Table 2 reports the empirical results. The Þrst column is identical to that of Table 1. Given these

parameters estimates, we simulate the RBC model and estimate an LSVAR speciÞcation on these

simulated data so as to identify the associated IRFs. Figure 11 reports the IRFs from the actual

data, from simulated data as well as the true IRF from the RBC model. The left column of Figure

11 is the same as that of Figure 5. The right column of Figure 11 allows us to assess the ability

of the RBC model estimated from the DSVAR auxiliary criterion to reproduce IRFs estimated in

the LSVAR speciÞcation on actual data. As this Þgure makes clear, the RBC model matches well

the responses of hours. More precisely, the responses of hours from simulations display a similar

hump�shaped pattern to those obtained from the actual data. To test the match between the two

IRFs, we compute the following statistic Qi for various horizons

Qi =
³bψ[1:i],T − eψ[1:i],T,S(eθ2,T,S)´0Ω[1:i],T ³bψ[1:i],T − eψ[1:i],T,S(eθ2,T,S)´ ,

where bψ[1:i],T are the IRFs of hours deduced from an LSVAR speciÞcation on actual data, eψ[1:i],T,S(eθ2,T,S)
is bψ[1:i],T �s simulated counterpart, and Ω[1:i],T is the inverse of the covariance matrix of bψ[1:i],T . This
simple test (see the Qi, i = 6, 11, 21, statistic in Table 2) shows that the RBC model, estimated using

the DSVAR model as an auxiliary criterion, generates responses of hours that are not signiÞcantly

different from those obtained under the empirical LSVAR model at horizons 6 and 11 (see the P-

values of Q6 and Q11). However, for a longer horizon, the RBC model has trouble reproducing the

response of hours to a non�technology shock (see Q21 in the table).

We now investigate whether the model is able to match the responses of hours in an LSVAR speci-

Þcation using the Indirect Inference approach. The second column of Table 2 reports the parameter

estimates. Note that the standard errors of the two shocks are larger than those of the Þrst column.
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The global speciÞcation tests indicates that the RBC model easily matches the responses of hours.

Given the large conÞdence interval of the response to a technology shock (see the left column of

Figure 12), this is not surprising. Moreover, the LSVAR speciÞcation is a priori in accordance with

the RBC model, since hours increase after a technology shock both in the LSVAR model and in the

RBC model. However, the response to a non�technology shock is very precisely estimated, making

any departure from it very penalizing in the objective function. Using these estimated values, we

now compute the responses of hours using a DSVAR speciÞcation applied on simulated paths from

the RBC model. The right column of Figure 12 reports the impulse responses from the DSVAR

model. The responses from simulated data depart signiÞcantly from those of actual data. Indeed,

the response of hours to a technology shock is zero on impact and becomes persistently positive.

Moreover, the response to a non�technology shock does not display the hump�shaped proÞle seen

in the empirical responses. The Qi statistic (see the second column of Table 2) indicates that the

model estimated from an LSVAR speciÞcation fails to reproduce a DSVAR speciÞcation. This re-

sult, together with the previous ones, show that the DSVAR speciÞcation, although providing biased

responses of hours, indirectly encompasses (i.e. through the RBC model) the LSVAR speciÞcation,

while the converse is not true. This result suggests that results obtained from the SVAR approach

should be taken cautiously.

Finally, we estimate the structural model using the two SVAR speciÞcations as auxiliary models for

indirect estimation, i.e. the responses of hours to technology and non�technology shocks with hours

in difference and in level. The J-statistic in the third column of Table 2 shows that the RBC model

is able to match very well the responses of hours. In the DSVAR speciÞcation, the response under

the model is negative, whereas it is persistently positive in the LSVAR speciÞcation. These results

show that a simple RBC model in which hours increase after a technology shock easily encompasses

SVAR models with contradictory results.

5 Concluding Remarks

The identiÞcation of the response of hours worked after a technology shock using SVAR has renewed

the debate on the relative contributions of various shocks to the business cycle. More precisely, the
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DSVAR approach documents a striking evidence against the standard RBC model: after a positive

technology shock, hours worked decrease. For researchers that use the SVAR approach, this evidence

suggests to abandon the RBC model in favor of models with important (real) frictions and (nominal)

rigidities.

This paper shows that DSVAR speciÞcations poorly identify the impulse responses of hours and

suggests another way to evaluate DSGE model. Using an indirect approach (Indirect Inference),

we show that a Kydland�Prescott type model matches indirectly very well impulse responses of

DSVAR. Moreover, the estimated technology shock accounts for a large part of output ßuctuations

at business cycle frequencies. Finally, the proposed RBC model encompasses both the LSVAR and

DSVAR models.
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Appendix

A Proof of Proposition 1

We consider the estimation of a VAR(1) model with data generated by the structural model of section 1 (see equations
(3)�(5)). The VAR(1) model has the form:µ

∆xt
∆nt

¶
= A1

µ
∆xt−1
∆nt−1

¶
+

µ
ε1,t
ε2,t

¶
, A1 =

µ
a11 a12
a21 a22

¶
.

The OLS regression from the Þrst equation yields:µ ba11ba12
¶
=

µ
V (∆xt) Cov(∆xt,∆nt)

Cov(∆xt,∆nt) V (∆nt)

¶−1µ
Cov(∆xt,∆xt−1)
Cov(∆xt,∆nt−1)

¶
whereas the OLS regression from the second equation yieldsµ ba21ba22

¶
=

µ
V (∆xt) Cov(∆xt,∆nt)

Cov(∆xt,∆nt) V (∆nt)

¶−1µ
Cov(∆nt,∆xt−1)
Cov(∆nt,∆nt−1)

¶
The variances and covariances that enter in the A1 matrix are given by V (∆xt) = σ2z + 2σ

2
χ(1 − α)2/(1 + ρχ),

V (∆nt) = 2σ
2
χ/(1 + ρχ), Cov(∆xt,∆nt) = −2(1−α)σ2χ/(1 + ρχ), Cov(∆xt,∆xt−1) = −(1− ρχ)(1−α)2σ2χ/(1 + ρχ),

Cov(∆xt,∆nt−1) = (1−ρχ)(1−α)σ2χ/(1+ρχ), Cov(∆nt,∆xt−1) = (1−ρχ)(1−α)σ2χ/(1+ρχ) and Cov(∆nt,∆nt−1) =
−(1− ρχ)σ2χ/(1 + ρχ). The OLS estimator bA1 of A1 is then deduced

bA1 =

Ã
0

(1−ρχ)(1−α)
2

0 −1−ρχ
2

!

The residuals of each equation are given by

ε1,t = ∆xt −
(1− ρχ)(1− α)

2
∆nt−1

ε2,t = ∆nt +
1− ρχ
2

∆nt−1

and the associated covariance matrix is

Σ =

Ã
σ2z +

(3−ρχ)(1−α2)
2 σ2χ − (3−ρχ)(1−α)

2 σ2χ
− (3−ρχ)(1−α)

2 σ2χ
3−ρχ
2 σ2χ

!

We thus compute the long�run covariance matrixµ³
I2 − bA1

´−1¶
Σ

µ³
I2 − bA1

´−1¶0
=

Ã
1

(1−ρχ)(1−α)
3−ρχ

0 2
3−ρχ

!Ã
σ2z +

(3−ρχ)(1−α2)
2 σ2χ − (3−ρχ)(1−α)

2 σ2χ
− (3−ρχ)(1−α)

2 σ2χ
3−ρχ
2 σ2χ

!
Ã

1 0
(1−ρχ)(1−α)

3−ρχ
2

3−ρχ

!

=

 σ2z +
2(1−α)2
3−ρχ σ2χ −2(1−α)

3−ρχ σ
2
χ

−2(1−α)
3−ρχ σ

2
χ

2
3−ρχσ

2
χ
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The matrix C(1) is the Choleski decomposition of the long�run covariance matrix

C(1) =


³
σ2z +

2(1−α)2
3−ρχ σ2χ

´1/2
0

− 2(1−α)σ2χ
(3−ρχ)

³
σ2z+

2(1−α)2
3−ρχ σ2χ

´1/2
Ã

2σ2zσ
2
χ

(3−ρχ)
³
σ2z+

2(1−α)2
3−ρχ σ2χ

´
!1/2


The IRF for labor productivity and hours are then deduced from C(L)

C(L) = (I2 − bA1L)
−1(I2 − bA1)C(1)

The response on impact of hours to a technology shock is negative

− (1− α)σ2χ³
σ2z +

2(1−α)2
3−ρχ σ2χ

´1/2
and the response at horizon k of the level of hours is

− (1− α)σ2χ³
σ2z +

2(1−α)2
3−ρχ σ2χ

´1/2 kX
j=0

µ
−
µ
1− ρχ
2

¶¶j
.

Since ¯̄̄̄
1− ρχ
2

¯̄̄̄
< 1,

we obtain
kX
j=0

µ
−
µ
1− ρχ
2

¶¶j
=
1−

³
ρχ−1
2

´k+1
1 +

1−ρχ
2

> 0
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Figure 1: IRF of hours
(a) iid preference shock (ρχ = 0)
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Figure 2: The Binding Function and Indirect Estimation
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B Indirect Inference Weighting Matrix

This appendix describes how were computed the impulse response functions and their asymptotic conÞdence intervals.
It is convenient to deÞne

Π0 =
¡
A1 A2 · · · A+

¢
Q = E



zt−1
zt−2
...

zt−p



zt−1
zt−2
...

zt−p


0

Now let �Π and �Σ denote the empirical estimates of Π and Σ, respectively. We regroup the VAR parameters in the
vector β :

β = (vec(Π)0, vech(Σ)0)0, �β = (vec(�Π)0, vech(�Σ)0)0,

where vec (·) is the operator transforming an (n× n) matrix into an (n2 × 1) vector by stacking the columns, vech (·)
is the operator transforming an (n× n) matrix into an (n (n+ 1) /2× 1) vector by vertically stacking those elements
on or below the principal diagonal. For later purpose, deÞne m = n (n3+ (n+ 1) /2), so that β is an (m× 1) vector.
Following Hamilton (1994) (proposition 11.2, page 301), it can be shown that

√
T (�β − β) ∼

a
N

µµ
0
0

¶
,Σβ

¶
,

where T is the sample size and

Σβ =

µ
Σ⊗Q−1 0

0 Σ22

¶
,

with Σ22 deÞned as
Σ22 = 2

¡
D+
n

¢
(Σ⊗Σ) ¡D+

n

¢0
.

Here D+
n is the unique matrix such that vech(Σ) =D

+
n vec(Σ). In practice, we replace Σ and Q in the above formula

with their empirical counterparts

�Σ =
1

T

TX
t=1

�²t�²
0
t

�Q =
1

T

TX
t=1

xtx
0
t

We assume that the canonical innovations are linear combinations of the structural shocks ηt, i.e.

εt = Sηt,

for some non singular matrix S. We impose an orthogonality assumption on the structural shocks, which combined
with a scale normalization implies Eηtη

0
t = In. Now, let us deÞne

B (L) = (In −A1L− · · ·−ApL
p)−1

C (L) = B (L)S

Now, let us deÞne the vector collecting the dynamic response of the components of zt to a technology/supply shock
η1,t

ψk =
∂zt+k
∂η1,t

.

Formally, ψk is the Þrst column of Ck, where Ck is the k-coefficient of C (L). In the sequel, we deÞne ψ as

ψ = vec([ψ0,ψ1, . . . ,ψk]
0).
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Recall that Ck = BkS, where Bk is the upper leftmost (n× n) block of Fk (Hamilton, 1994, p. 260), where

F
(np×np)

=


A1 A2 A3 · · · Ap−1 Ap

In 0n×n 0n×n · · · 0n×n 0n×n
0n×n In 0n×n · · · 0n×n 0n×n
...

...
... · · · ...

...
0n×n 0n×n 0n×n · · · In 0n×n


In practice, we use this formula with �Σ, �A1,..., and �Ap substituted for Σ, A1,..., and Ap to estimate the ψk. In the
sequel, we let �ψk denote the empirical estimates of ψk and �ψ denote the empirical estimate of ψ. To compute the
conÞdence intervals of �θ, we resort to the δ-function method. It can be shown that θ is an implicit function of β.
Then, we obtain the formula √

T (�ψ −ψ) ∼
a
N

µ
0,
∂ψ(β)

∂β0
Σβ
∂ψ(β)0

∂β

¶
.

In practice, the derivatives ∂ψ(β)/∂β0 are computed numerically at the point estimate �β.
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Figure 3: Model Impulse Responses of Hours to Technology Shocks
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Figure 4: IRF of hours

(a) NFB sector data (b) B sector data
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Table 1: Results from DSVARs

Data NFB sector B sector Mixed NFB sector Mixed B sector NFB sector

Variable Hours Hours Hours Hours Output-Hours

b 0.8367 0.8563 0.8482 0.8816 0.6361
(0.2106) (0.2100) (0.2806) (0.1678) (0.0772)

σz 0.0256 0.0228 0.0126 0.0137 0.0168
(0.0079) (0.0065) (0.0020) (0.0017) (0.0006)

ρχ 0.6855 0.6837 0.7004 0.6507 0.9680
(0.2981) (0.3073) (0.4016) (0.2636) (0.0642)

σχ 0.0255 0.0287 0.0270 0.03381 0.0147
(0.0281) (0.0367) (0.0422) (0.0433) (0.0006)

J − stat 11.82 6.23 9.88 9.13 65.36
[100] [100] [100] [100] [88.2]

V (y/εz) (in %) 87.2 84.0 68.5 70.5 82.4

V (n/εz) (in %) 23.1 18.4 10.9 9.9 25.7

Corr(y, n/εz) 0.83 0.81 0.82 0.76 0.95

Note: standard�errors in parentheses; P�values in brackets
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Figure 5: IRF of hours (NFB sector data)
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Figure 6: IRF of hours (B sector data)
Hours: Tech. Shock
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Figure 7: IRF of hours (mixed NFB sector data)
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Figure 8: IRF of hours (mixed B sector data)
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Figure 9: IRF of output and hours (NFB sector data)
DSVAR, Output: Tech. Shock
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Figure 10: IRF of hours in LSVAR (NFB sector data)
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Table 2: Results from SVARs

Model DSVAR LSVAR DSVAR�LSVAR

Data NFB NFB NFB
Variable Hours Hours Hours

b 0.8367 0.9323 0.9469
(0.2106) (0.0154) (0.0125)

σz 0.0256 0.0600 0.0376
(0.0079) (0.0107) (0.0043)

ρχ 0.6855 0.5597 0.5153
(0.2981) (0.0669) (0.0399)

σχ 0.0255 0.0633 0.0760
(0.0281) (0.0143) (0.0184)

J − stat 11.82 4.25 32.87
[100] [100] [100]

Q6 16.26 26.67 �
[17.9] [0.9] �

Q11 23.28 39.10 �
[38.6] [1.37] �

Q21 61.38 80.27 �
[2.70] [0.03] �

V (∆y/εz) (in %) 87.2 94.8 91.3

V (n/εz) (in %) 23.1 23.6 13.0

Corr(y, n/εz) 0.83 0.64 0.58

Note: standard�errors in parentheses; P�values in brackets
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Figure 11: IRF of hours in DSVAR and LSVAR (estimations from DSVAR)
DSVAR, Hours: Tech. Shock
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Figure 12: IRF of hours in DSVAR and LSVAR (estimations from LSVAR)
LSVAR, Hours: Tech. Shock
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Figure 13: IRF of hours in DSVAR and LSVAR (estimations from DSVAR and LSVAR)
DSVAR, Hours: Tech. Shock
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