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Grhv Fruuhodwlrq Ehwzhhq Vwrfn Uhwxuqv Uhdoo|
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Edqtxh gh Iudqfh/ 74046<4 Fhqwuh gh uhfkhufkh

64 uxh Furl{ ghv Shwlwv Fkdpsv/ :837< Sdulv/ Iudqfh1

Dsulo 5333

Devwudfw

Fruuhodwlrqv ehwzhhq lqwhuqdwlrqdo htxlw| pdunhwv duh riwhq fodlphg wr lq0

fuhdvh gxulqj shulrgv ri kljk yrodwlolw|/ wkhuhiruh wkh ehqh�wv ri lqwhuqdwlrqdo

glyhuvl�fdwlrq duh uhgxfhg zkhq wkh| duh prvw qhhghg/ l1h1 gxulqj fulvhv1 Lq

wklv sdshu/ zh lqyhvwljdwh wkh uhodwlrqvkls ehwzhhq lqwhuqdwlrqdo fruuhodwlrq

dqg vwrfn0pdunhw wxuexohqfh1 Zh hvwlpdwh d pxowlyduldwh Pdunry0vzlwfklqj

prgho/ lq zklfk wkh fruuhodwlrq pdwul{ lv doorzhg wr ydu| dfurvv uhjlphv1 Vxe0

vhtxhqwo|/ zh whvw wkh qxoo k|srwkhvlv wkdw fruuhodwlrqv duh uhjlph lqghshqghqw1

Xvlqj zhhno| vwrfn uhwxuqv iru wkh V)S/ wkh GD[ dqg wkh IWVH ryhu wkh sh0

ulrg 4<;;04<<</ zh �qg wkdw lqwhuqdwlrqdo fruuhodwlrqv vljql�fdqwo| lqfuhdvhg

gxulqj wxuexohqw shulrgv1

Uìvxpì

Fhuwdlqhv ìwxghv hpslultxhv rqw plv hq ìylghqfh txh ohv fruuìodwlrqv hqwuh

pdufkìv erxuvlhuv lqwhuqdwlrqdx{ furlvvhqw hq sìulrgh gh iruwh yrodwlolwì1 Ohv

jdlqv dssruwìv sdu od glyhuvl�fdwlrq lqwhuqdwlrqdoh ghv sruwhihxloohv vrqw doruv

uìgxlwv oruvtx*lov vrqw oh soxv qìfhvvdluhv/ f*hvw0ã0gluh hq sìulrgh gh fulvh1 Gdqv

fh sdslhu/ qrxv h{dplqrqv od uhodwlrq hqwuh ohv fruuìodwlrqv lqwhuqdwlrqdohv hw

ohv wxuexohqfhv vxu ohv pdufkìv erxuvlhuv1 Qrxv hvwlprqv xq prgëoh ã fkdqjh0

phqw gh uìjlphv pxowlydulì/ gdqv ohtxho od pdwulfh gh fruuìodwlrqv gìshqg gx

uìjlph1 Qrxv whvwrqv doruv o*k|srwkëvh qxooh vhorq odtxhooh ohv fruuìodwlrqv vrqw

lqgìshqgdqwhv gx uìjlph1 D sduwlu gh uhqghphqwv erxuvlhuv khegrpdgdluhv

srxu oh V)S/ oh GD[ hw oh IWVH dx frxuv gh od sìulrgh 4<;;0<</ qrxv rewhqrqv
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1 Introduction

Correlations between international equity markets are often claimed to increase during
periods of high volatility. This issue is truly important for both portfolio managers
and regulators, since international diversification benefits seem to decrease when they
are most needed, i.e. during periods of market turbulence. Modern portfolio theory,
since the seminal work of Markowitz (1952), underlined that not only returns and
volatilities are important in the portfolio selection process, but also that correlations
between assets are really a key to a good asset allocation. Therefore to perform
an optimal allocation, one needs to determine precisely correlations between assets.
If correlations are time-varying, and more precisely if correlations increase during
periods of high volatility, then the allocation process is biased. Under this hypothesis,
the portfolio is not diversified enough during periods of high volatilities as correlations
increase.

Thus, as pointed out by Ang and Bekaert (1999), this increase in correlation
may partly explain the home bias puzzle, one of the most challenging puzzles in
international finance. This home bias puzzle represents the fact that investors tend
to diversify far less internationally than what theory would predict. French and
Poterba (1991) report that, at the end of the 1980s, domestic ownership shares in the
stock market were 94% for the US, 98% for Japan and 82% for the UK.

The aim of our paper is to investigate the relationship between international
correlation and stock-market turbulence. We want to assess empirically whether the
claim that correlations increase during turbulent period is true.

The existing literature actually found rather mixed empirical evidence on the link
between international correlation and stock-market turbulence. A first approach ex-
amined the stability of the correlation between returns over different periods of time.
Kaplanis (1988) for instance did not reject the null hypothesis of constant correlation
of monthly returns of 10 markets over the 1967-82 period. Ratner (1992) obtained
a similar result over the 1973-89 period. Koch and Koch (1991) obtained a growing
market interdependence in 1980 and 1987 as compared to 1972. Some papers focused
more precisely on the effect of the 1987 crash: King and Wadhwani (1990), Bertero
and Mayer (1990), Lee and Kim (1993) claimed that correlations increased signif-
icantly after the US stock-market crash. Similarly, King, Sentana, and Wadhwani
(1994) found that the increase in correlation is only a transitory effect caused by the
1987 crash. See also Roll (1989) for a survey. Most of papers cited above consider
changes in correlation by comparing unconditional correlation across different sub-
periods. However the breakpoint is generally exogenously selected. This approach
implies that two subperiods corresponding to low and high volatilities have to be
identified a priori. However, recent evidence by Boyer, Gibson, and Loretan (1997)
as well as Forbes and Rigobon (1999) showed that testing unconditional correlation
coefficient may be misleading. Indeed, this coefficient is biased when volatility shifts
over time.

Another abundant and recent literature is based on the autoregressive conditional
heteroskedasticity (ARCH) framework: Hamao, Masulis, and Ng (1990) estimated
a two-step multivariate GARCH model allowing to measure interdependence of re-
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turns and volatilities across the New York, Tokyo and London stock markets. When
they include the October 1987 crash period in the data set, they obtained signifi-
cant spillovers in almost all directions, in terms of both return and volatility. Using a
similar GARCH approach to study the interrelation between the New York and Lon-
don stock markets, Susmel and Engle (1994) focused on hourly data. Even for the
period including the 1987 crash, they did not find strong evidence of international
volatility spillovers. Longin and Solnik (1995) specifically tested the hypothesis of
a constant international conditional correlation between a large number of monthly
stock returns over the large period 1960-90. Using bivariate GARCH models, they ex-
plored several potential sources of deviation from the constant conditional correlation
model. In particular, they tested the hypothesis of higher international correlation
during turbulent periods. They found that correlation generally rises in periods of
high volatility. Using daily stock returns, Bera and Kim (1996) strongly rejected
the conditional correlation between US market and Japan, German, UK, France and
Italy markets over the period 1990-95.

Although the GARCH approach clearly improves our comprehension of the link
between international correlation and stock markets turbulence, it also raises two
serious difficulties. First, in most of the empirical studies, stock volatility is found to
be too persistent, implying an explosive conditional variance. For instance, some esti-
mations performed by Hamao, Masulis, and Ng (1990), Susmel and Engle (1994), or
Hamilton and Susmel (1994), display excessive volatility persistence. Such a persis-
tence gives rise to another related problem: Lamoureux and Lastrapes (1990) showed
that GARCH models are strongly affected in case of structural breaks. As highlighted
by Hamilton and Susmel (1994), after a large shock on the stock market such as the
1987 crash, the forecast volatility decreased much more slowly than the true volatility
(as measured, for instance, by implied volatility extracted from stock-option prices).

Second, in previous papers, when modelling the relationship between international
correlation and turbulent periods, it is implicitly assumed that the estimated relation
is stable over the sample period. Thus parameters are held constant whatever the
regime, calm or turbulent. Bera and Kim (1996) proposed a formal test of constancy
of correlation within such a framework. Assuming a constant correlation multivariate
GARCH model as the DGP under the null hypothesis, they derive a score test for
correlation constancy in a bivariate normal model. Interestingly, this test only requires
the estimation of the model under the null hypothesis. It is not adapted for our
problem, however, since only one regime is allowed under the null hypothesis. An
alternative way would be to treat turbulent periods as essentially different from calm
periods. This can easily be done using a Markov-switching model as introduced by
Hamilton (1989) (MS model).

An interesting empirical feature of MS models is that thus-estimated volatility
appears to be significantly less persistent than standard GARCH-model estimated
volatility. Early papers on MS model assumed only few parameters to be regime
dependent, in order to deal with computational burden. More generally this model has
been generalized in a GARCH context by Cai (1994) and Hamilton and Susmel (1994)
(MS-GARCH model). For instance, Hamilton and Susmel (1994) proposed within-
regime volatility specifications that differ by a multiplicative scaling parameter. Gray
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(1996) developed a generalized regime-switching model, in which all of the GARCH
parameters are regime dependent.

However, these previous papers only considered univariate MS or MS-GARCH
models. Therefore, these models were not designed to measure regime-dependent
international correlations. Ramchand and Susmel (1998) develop a multivariate MS
model to test the hypothesis of a constant international conditional correlation be-
tween stock markets. They assume for each regime a constant-correlation bivariate
ARCH model, in which volatility regime shifts are captured by a scale parameter.
In a bivariate setting, they test the hypothesis of a constant conditional correlation
between the US market and Japan, UK, Germany and Canada markets, using weekly
returns from January 1980 to January 1990. In this framework, correlation is assumed
to depend only on the state of the domestic (US) return. The null hypothesis is re-
jected in two over the four cases: between the US and the UK and between the US
and Canada.

The approach develop in this paper differ from Ramchand and Susmel (1998) in
different respects. First, since Ramchand and Susmel were unable to obtain significant
within-regime ARCH effects, we adopt a simple MS model with constant within-
regime volatilities. But we also estimate a generalized ARCH, allowing a more complex
dynamics for volatility. Second, we assume that volatilities shift in all markets at the
same date. This is a more constraining assumption, but it allows to distinguish
unambiguously between calm and turbulent regimes. This approach is justified in
Section 4 on empirical grounds. Moreover, we take into account some empirical
features of stock returns. In particular, we address the non-normality feature of
innovations, by allowing for a Student-t distribution, along the lines of Bollerslev
(1987) and Baillie and DeGennaro (1990).1

In this paper, we focus on US, German, and UK weekly stock returns, over the
1988-99 period. In section 2, we describe the data used and provide some preliminary
evidence on unconditional correlation between stock markets. Section 3 is devoted to
the econometric methodology. We briefly present multivariate GARCH model with
constant correlation and two-regime MS models. Next we indicate how to generalize
the MS model to a multivariate context and how to test the null hypothesis of constant
conditional correlation. Empirical results and economic implications are presented in
section 4. Our conclusions are summarized in Section 5.

2 Data and preliminary evidence

2.1 Data

In this paper, we study the effect of turbulent periods on the international correlation
between stock markets. We use weekly (from Friday to Friday) stock returns for New

1Stock returns are also known to affect asymmetrically subsequent volatility; this so-called lever-
age effect has been highlighted by Black (1976). Following Engle and Ng (1991), we estimated
the specification proposed by Glosten, Jagannathan, and Runkle (1989), but we failed to obtain
significant leverage effect.
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York, Frankfurt and London stock markets.2 For New York we use observations from
the Standard and Poor’s 500 Composite Index (S&P). The index represents approx-
imately 75% of the investment-grade stocks held by most institutional investors. For
Germany we use the DAX Share Index, which includes 30 of the most heavily traded
stocks listed on the Frankfurt Stock Exchange, representing over 75% of the total
turnover in German equities. For London we use the Financial Times 100 Share In-
dex (FTSE), which also represents about 75% of the total equity turnover in the UK.
The three indices are capitalization-weighted. The data cover the period from Jan-
uary 1988 to December 1999, and consist of 620 observations. Unlike most previous
studies, our sample period excludes the October 1987 crash. Indeed the 1987 crash is
shown to have dramatically affected stock markets and increased, at least transitory,
international correlations (King and Wadhwani, 1990, Hamilton and Susmel, 1994).

Let rit, t = 1, ..., T , denotes the weekly stock (log) return of market i. As a
preliminary look at the data, Table 1 reports summary statistics on stock returns,
including the mean, standard deviation, skewness and kurtosis.

The average weekly return is positive, ranging from 0.21% to 0.27% for the three
stock returns. Standard deviations are ranging from 1.92% for the S&P to 2.62% for
the DAX. Skewness (Sk) and its standardized version (Sk∗) are measure of the distri-
bution’s asymmetry of returns. US and German stock returns are negatively skewed,
indicating that crashes are more likely to occur than booms. For UK stock returns
conversely, the skewness is positive, although non-significantly different from 0 at a
five percent significance level. Excess kurtosis measures the heaviness of distribution’s
tails compared to the normal one. The kurtosis of the normal distribution is 3. The
kurtosis significantly exceeds 3 for all markets, therefore the distribution has fatter
tails than the normal one. The Jarque-Bera test statistic strongly rejects the normal-
ity hypothesis of stock returns. Those preliminary statistics confirm some widespread
results in the financial literature on stock returns: positive return, negative skewness
and fat tails.

We next consider heteroskedasticity by regressing squared returns on past squared
returns (up to 4 and 12 lags). The TR2 Engle statistic, where R2 is the coefficient of
determination, is distributed as a χ2K under the null hypothesis of homoskedasticity
(K = 4 and 12 respectively). The Engle statistic takes very large values for each
market, indicating strong non-linear (second-moment) dependencies. We therefore
conclude that there is a fair amount of heteroskedasticity in the data.

We now wish to test for the presence of return serial correlation. Given the high
level of heteroskedasticity, we consider the usual Ljung-Box statistic as well as a
version of the Ljung-Box statistic which corrects for heteroskedasticity (see White,
1980). For 4 (resp. 12) lags, the Ljung-Box statistic (LB) and the corrected Ljung-
Box statistic (LBc) are distributed as a χ2

4
(resp. χ2

12
). LB and LBc statistics for

returns do not indicate significant linear dependencies of returns, for all markets
investigated.

2We prefer weekly returns to daily returns, because weekly data is less noisy than daily data.
Moreover we did not consider monthly data, because the number of observations would have been
too small.
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2.2 Preliminary evidence on international correlations

Table 2 reports unconditional correlation coefficients between stock returns estimated
over the whole sample 1988-99. Correlation between stock returns is quite high: the
lowest correlation is 0.45 (between S&P and DAX), whereas the highest correlation
is 0.58 (between DAX and FTSE).

To get some additional insight on international correlation, Fig. 1 displays uncon-
ditional variances and unconditional correlations across markets (S&P-DAX, S&P-
FTSE and DAX-FTSE). Variances and correlations are computed over a sliding win-
dow of one year.3 The first subperiod (1988-91) has been affected by the German
reunification at the mid-1990 and the Gulf war at the beginning of 1991. S&P and
DAX variances appear to be very low over the 1992-95 subperiod. The major finan-
cial event occurring during this subperiod is the EMS crisis, at the mid-1992, which
appears to have strongly affected the FTSE. The last subperiod is associated with a
strong S&P volatility increase. The increase took place in Germany and the UK at
the mid-1997. Two major events have impacted on stock markets: the South-East
Asian crisis at the mid-1997 and the Russian crisis at the mid-1998. Therefore at
first glance, the second subperiod can be seen as a calm period, whereas the first and
last periods can be seen as turbulent periods.

Correlations present a somewhat different pattern. First S&P-DAX and S&P-
FTSE correlations attain a minimum in 1994, during the so-called calm period. More-
over correlations are rather high during the last subperiod, especially the S&P-DAX
correlation. However, we note that an increase in correlation cannot be systematically
related to an increase in variance in our data sample. Two events are particularly
worth noting from this point of view: first, the S&P-DAX correlation strongly de-
creased between 1993 and 1994 (from about 0.4 to 0.1). Second, the S&P-FTSE
correlation peaked markedly in 1995 (from 0 to 0.6). Both events cannot be related
to particular shocks on the variance of stock markets.

Table 2 also reports unconditional correlation matrices and variances computed
over the three identified subperiods (1988-91, 1992-95 and 1996-99). The first and
last subperiods can be seen as high-volatility episodes, whereas the second subperiod
is characterized by a low volatility. Therefore testing for a constant unconditional
correlation over these subperiods can be interpreted as a test of the link between
correlation increase and stock-market turbulence. A formal test for a constant un-
conditional correlation can be performed using the Jennrich (1970) test of equality
of two correlation matrices computed over independent subsamples. This test has
been performed for instance by Kaplanis (1988), Ratner (1992) or Longin and Solnik
(1995). Table 3 reports results of the Jennrich test. For an (n, n)-dimensional correla-
tion matrix, the test statistic is distributed as a chi-square with n (n− 1) /2 degrees
of freedom. Each subsample contains 206 observations. First, the null hypothesis
cannot be rejected over the 1988-91 and 1992-95 subperiods. Even if we consider
pairwise correlations, none is found to have significantly changed. Second, the cor-
relation matrices estimated over the 1992-95 and 1996-99 subperiods are found to

3We notice that such a computation allows to identify large swings in variance as well as in
correlation, but not structural breaks in the series, since the series are smoothed.
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be significantly different at any usual level. Over the last subperiod (1996-99), in-
ternational linkages increased dramatically: correlations are higher than 0.6 for the
three stock markets under study. Correlation between DAX and FTSE even reached
0.7. These results confirm the empirical evidence by Kaplanis (1988) and Longin and
Solnik (1995), who found lower p-values for the Jennrich test over the more recent pe-
riod. This increase in correlations may be indicative of a growing integration between
stock markets.4

Finally, our results confirm only partly the presumed relationship between inter-
national correlation and stock-market turbulence. On one hand, the agitated period
beginning in 1997 has rightly lead to a significant increase in correlation. But, on
the other hand, the decrease in volatility in 1992 has not been accompanied by a
significant decrease in correlation.

Recently, however, Boyer, Gibson, and Loretan (1997) and Forbes and Rigobon
(1999) argued that the test of unconditional correlation constancy across various
subperiods may be misleading. This is because the unconditional correlation estimate
is biased in case of variance shift. Therefore, even when the breaking date is assumed
to be known (corresponding to a well-established crash, for instance), unconditional
correlation estimates have to be corrected before any testing procedure. Moreover,
as pointed out by Boyer, Gibson, and Loretan (1997), when the breaking date cannot
be considered as a clear structural break, “changes in correlations over time or across
‘regimes’ cannot be detected reliably by splitting a sample according to the realized
values of the data.” This result is a consequence of the selection bias that occurs when
subsamples are chosen a priori, according to the data. In order to test for a change
in correlation, it is therefore necessary (1) to use a data generating process allowing
for the possibility of structural changes, (2) to estimate the model’s parameters and
(3) to test changing correlations (and possibly other structural breaks).

In the following section, we test the null hypothesis of a constant conditional
correlation in a model where the variance regime is determined endogenously. More
precisely, we test whether a change in volatility regime (from a calm regime to a
turbulent regime) can affect significantly the conditional correlation between stock
returns.5 As a base model, we adopt a constant-correlation multivariate GARCH
model, as in Longin and Solnik (1996) or Ramchand and Susmel (1998). In this
framework, time-varying volatility is modelled by univariate GARCH specifications
and correlations are assumed to be constant over time or across regimes. We then
consider a MS model, in which volatilities and correlations vary across regimes but
are constant within regime.

4However, it is worth noting that the period studied by Longin and Solnik (1995) ended with
the 1987 crash, whereas our sample ended with the 1997-98 South-East Asian and Russian crises.
These events may be largely responsible for the increasing international correlation obtained in both
papers.

5Another way to compute correlations conditional to the regime has been advocated by Longin
and Solnik (1998), in the context of the multivariate extreme value theory.

7



3 Econometric methodology

In this section, we recall some methodological aspects of two well-known econometric
models: the constant-correlation multivariate GARCH model and the multivariate
MS model.

3.1 The constant-correlation multivariate GARCH model

A standard approach to modelling time-varying volatility is the ARCH and GARCH
models, formulated by Engle (1982) and Bollerslev (1986) respectively. Several mul-
tivariate extensions have been proposed in the literature. Two parsimonious speci-
fications are the BEKK representation (Engle and Kroner, 1995) and the constant-
correlation ARCH (Bollerslev, 1990). In the BEKK model, the conditional covari-
ances are modelled in a similar way as conditional variances. Testing for a constant
correlation in such a framework would be rather difficult, since this hypothesis can-
not be expressed in terms of estimated parameters only. Conversely, in the constant-
correlation model, time-varying conditional covariances are parametrized to be pro-
portional to the product of corresponding conditional standard deviations. Therefore,
the conditional correlation is a parameter to be estimated and it can be easily tested.

Let rt = {r1t, ..., rnt} denotes the (n, 1) vector of returns. Then the multivariate
process for returns can be written as:

rt = µ+ εt (1)

µ = E [rt|It−1]
εt|It−1 ∼ N (0, Ht)

where It−1 is the information set available at time t − 1 and Ht is the time-varying
conditional covariance matrix. Let hijt denote the ijth element of Ht and hit the iith

element of Ht. εt is the innovation process with mean zero and covariance matrix
Ht, and it is assumed to be normally distributed. The standard representation of the
constant-correlation GARCH(1,1) model is the following (Bollerslev, 1990):

hit = ωi + αiε
2

it−1 + βihit−1 i = 1, ..., n (2)

hijt = ρij
√
hithjt i, j = 1, ..., n, j �= i (3)

where the conditional correlation, ρij, is assumed to be constant over time.
Assuming conditional normality, the log-likelihood function for model (1) to (3)

is

L (θ1) = −Tn

2
ln (2π)− 1

2

T∑
t=1

(
ln |Ht|+ ε′tH

−1

t εt
)

(4)

where θ1 =
{
µi, ωi, αi, βi, ρij; i, j = 1, ..., n, j > i

}
denotes the vector of parameters

to be estimated. The log-likelihood function is maximized by the BHHH algorithm
(Berndt, Hall, Hall, and Haussman, 1974) using numerical derivatives.

In order to account for non-normality of the residual distribution, we also estimate
a GARCH model, in which standardized innovations, εit/

√
hit, are assumed to be
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drawn from a Student-t distribution with ν degrees of freedom (Bollerslev, 1987).
Such an assumption is designed to account for excess kurtosis in the residuals. The
log-likelihood function for such a model is therefore

L (θ2) =
T∑
t=1

ln


Γ(ν + n

2

) [√
π (ν − 2)Γ

(
ν

2

)]
−n
(
1 +

ε′tH
−1

t εt

(ν − 2)

)
−
ν+n

2

|Ht|−
1

2


 (5)

where θ2 =
{
µi, ωi, αi, βi, ρij, ν; i, j = 1, ..., n, j > i

}
. Normality is obtained when

ν → +∞.

3.2 The multivariate Markov-switching model

Several authors argued that the MS model may be an alternative challenging way of
modelling persistence in volatility. The MS model has been developed by Hamilton
(1988, 1989). In this model, time series are assumed to have different values of the
mean and variance in a small number of regimes. In the following basic model, the
rit process is assumed to depend on two underlying regimes, with constant mean and
variance in both regimes:

rit = µ0iSt + µ1i (1− St) +
√
h0iSt + h1i (1− St)εit

where εit ∼ iid N (0, 1). µk
i and hk

i are respectively the mean and variance of rit in
regime k. St denotes the unobserved regime of the system. St is assumed to follow a
two-state Markov process:

Pr [St = 0|St−1 = 0] = p

Pr [St = 1|St−1 = 0] = 1− p

Pr [St = 1|St−1 = 1] = q

Pr [St = 0|St−1 = 1] = 1− q.

Assuming conditional normality for each regime, the conditional distribution of rit is
expressed as a mixture of distributions:

rit|It−1 ∼
{

N (µ0i , h
0

i ) with probability πt

N (µ1i , h
1

i ) with probability 1− πt

where πt = Pr [St = 0|It−1] is the conditional probability of being in regime 0.
As pointed out by Sola and Timmermann (1994), this model, although very sim-

ple, is able to generate persistence in the aggregated over regimes conditional variance
process, defined as hit = E [r2it|It−1]− E [rit|It−1]2:

hit = πt

[(
µ0i

)2
+ h0it

]
+ (1− πt)

[(
µ1i

)2
+ h1it

]
−
[
πtµ

0

i + (1− πt)µ
1

i

]2
. (6)

To see this, assume that rit depends on two regimes, one regime characterized by a
low variance and the other regime by a high variance. Then, according to eq. (6), if
regimes are persistent, this model is sufficient to obtain persistence in volatility. On
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the contrary, a one-regime GARCH model is not capable of capturing the persistence
of regimes. It will therefore imply a strong volatility persistence, even if volatility
is constant within regime. Several empirical studies (in particular, Ramchand and
Susmel, 1998) found that assuming further time-varying within-regime volatility is
useless. In other words, the constant within-regime volatility MS model is sufficient
to take into account most time-variability of volatility.

Generalizing this model to the multivariate case is quite easy. Assuming that
innovations are correlated, with a constant conditional correlation within each regime,
the covariance matrix within regime k is defined as Hk =

(
hk
ij

)
, where hk

ii = hk
i and

hk
ij = ρkij

√
hk
i h

k
j , with ρkij the correlation coefficient in regime k.

To keep the model parsimonious, we adopt the following specification. First stock
markets are assumed to switch from one regime to the other at the same time. There-
fore regimes in various markets are perfectly correlated and transition probabilities are
identical for all stock returns. This assumption is intended to distinguish unambigu-
ously between calm and turbulent regimes.6 This can be related to the widely reported
empirical evidence on the existence of volatility spillover between stock markets
(Hamao, Masulis, and Ng, 1990). Second we do not consider time-varying transition
probabilities, in order to deal with computational burden. Under normality, the vector
of parameters to be estimated is then θ3 =

{
µi, h

0

i , h
1

i , ρ
0

ij , ρ
1

ij , p, q; i, j = 1, ..., n, j > i
}
.

When innovations are assumed to be Student-t distributed, the degree of freedom, ν,
is added to the parameter vector.

Estimation of a MS model is usually performed using (quasi) maximum likelihood
(QML) estimation. The sample log-likelihood function of the multivariate MS model
is

lnL (θ3) =
T∑
t=1

ln (f (rt|It−1)) =
T∑
t=1

ln

(
1∑

k=0

f (rt|St = k, It−1) Pr [St = k|It−1]
)

=
T∑
t=1

ln

(
1∑

k=0

gkt πt

)

where πt = Pr [St = 0|It−1] is computed as

πt = (1− q)
g1t−1 (1− πt−1)

g0t−1πt−1 + g1t−1 (1− πt−1)
+ p

g0t−1πt−1

g0t−1πt−1 + g1t−1 (1− πt−1)

and gkt = f (rt|St = k, It−1) is computed as

gkt =
1√
2π

∣∣∣Hk
t

∣∣∣−1/2 exp(−1

2

(
rt − µk

)
′
(
Hk

t

)
−1 (

rt − µk
))

k = 0, 1.

The log-likelihood function can be computed recursively. Reported standard errors
are heteroskedasticity consistent. See Gray (1996) for additional details on the esti-
mation method for the MS models.

6Alternatively, in a bivariate setting, Ramchand and Susmel (1998) consider a model with four
regimes. But to keep the system tractable, they then assume that correlations only depend on the
state of the US return.
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3.3 A multivariate GARCH model with changes in regime

Conditional on the regime, the MS model assumes that mean and variance are con-
stant over time. In particular, this rules out within-regime conditional heteroskedas-
ticity. Models allowing for time-varying conditional moments within each regime have
been proposed by Cai (1994), Hamilton and Susmel (1994) and Gray (1996). In MS-
GARCH models, some or all of the parameters are regime dependent. Assuming that
the conditional mean remains constant within each regime but that the conditional
variance has a GARCH dynamics, we obtain:

rit = µ0iSt + µ1i (1− St) +
√
h0itSt + h1it (1− St)εt (7)

where h0it and h1it have the same functional form as eq. (2). But, as suggested by Gray
(1996), h0it and h1it are constructed using lagged aggregated over regimes conditional
variance, ht, which is not path dependent (see eq. (6)), so that

h0it = ω0

i + α0i ε
2

it−1 + β0ihit−1 i = 1, ..., n

h1it = ω1

i + α1i ε
2

it−1 + β1ihit−1.

Measuring the link between an increase in conditional correlation and an increase
in volatility requires a further generalization of the MS-GARCH model to the mul-
tivariate case. We then adopt a multivariate MS-GARCH model with a constant
conditional correlation within each regime. This model can be summarized as fol-
lows:

Mean equation:

εt = rt − µt

with
µt = E [rt|It−1] = πtµ

0 + (1− πt)µ
1.

Variance and covariance equations:

h0it = ω0

i + α0i ε
2

it−1 + β0ihit−1 i = 1, ..., n (8)

h1it = ω1

i + α1i ε
2

it−1 + β1ihit−1 (9)

and

h0ijt = ρ0ij

(
h0ith

0

jt

)
1/2

i, j = 1, ..., n, j �= i (10)

h1ijt = ρ1ij

(
h1ith

1

jt

)1/2
. (11)

The covariance matrices within each regime are: Hk
t =

(
hk
ijt

)
, k = 0, 1. The aggre-

gated over regimes covariance matrix at time t is then defined as

Ht = E [rtr
′

t|It−1]− E [rt|It−1]E [rt|It−1]′ (12)

= πt

(
µ0µ0′ +H0

t

)
+ (1− πt)

(
µ1µ1′ +H1

t

)
− µtµ

′

t

with Ht = (hijt).
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Matrix of transition probabilities:

Pr [St = 0|St−1 = 0] = p

Pr [St = 1|St−1 = 0] = 1− p

Pr [St = 1|St−1 = 1] = q

Pr [St = 0|St−1 = 1] = 1− q.

Under normality, the vector of parameters to be estimated is θ4 = {µi, ω
0
i , ω

1
i , α

0
i , α

1
i ,

β0
i , β

1
i , ρ

0
ij, ρ

1
ij, p, q; i, j = 1, ..., n, j > i}. When innovations are assumed to be Student-

t distributed, the degree of freedom, ν, is added to the parameter vector.
The MS and MS-GARCH models described above are designed to test the null

hypothesis of a conditional correlation constant across regimes. Indeed, regimes are
only characterized by their covariance matrix, since returns are assumed to be regime-
independent. Then it is generally possible to identify a low-volatility regime and a
high-volatility regime.7 In this case, one only has to compare conditional correlations
obtained for both regimes. The test of the null hypothesis of a conditional correlation
matrix constant across regimes is based on the likelihood-ratio (LR) test statistic

ξ = 2
(
L (θ)− L

(
θ0
))

, where θ0 corresponds to the vector of parameters for ρ0ij = ρ1ij,

i, j = 1, ..., n, j > i. Under the null, the test statistic ξ is distributed as a χ2
n(n−1)/2.

4 Empirical results

4.1 The multivariate GARCH models

We begin with estimating multivariate GARCH models. First, we wish to show that
stock-return conditional volatility is time varying and, therefore, that a GARCH
or MS representation is relevant. Second, we want to illustrate some drawbacks of
the GARCH approach. In particular, GARCH models generally induce excessive
persistence in volatility dynamics.

Table 4 reports several summary statistics for various constant-correlation multi-
variate GARCH models. The statistics include the log-likelihood as well as the model
selection statistics proposed by Akaike (1976) and Schwartz (1978), the Ljung-Box
statistic corrected for heteroskedasticity and the TR2 Engle statistic for conditional
heteroskedasticity. First, the standard Gaussian GARCH model clearly dominates
the model with a constant covariance matrix. Under the null hypothesis of a con-
stant covariance matrix, the LR test statistic is distributed as a χ2

6. Since the LR
test statistic is equal to 126.2, the null hypothesis is rejected at any usual significance
level. For all countries, the volatility persistence (measured by λi = αi+βi) is ranging
from 0.964 to 0.993. Therefore, for all indices, the dynamics of conditional volatility
is very close to non-stationarity.

Many authors (following Black, 1976) have argued that a stock-return decrease
tends to increase subsequent volatility by more than would a stock-return increase

7Note however that, in a multivariate context, it is not always possible to identify low- and
high-volatility regimes, since all stock returns have not necessarily their low volatility in the same
regime.
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of the same magnitude. Estimating a model incorporating this so-called leverage
effect reduces only slightly the volatility persistence. Indeed, we estimated a Glosten,
Jagannathan, and Runkle (1993) model (GJR), in which the volatility dynamics in
eq. (2) is replaced by

hit = ωi + αiε
2
it−1 + βihit−1 + γiε

2
it−11{εit−1<0} i = 1, ..., n

where 1{condition} is the indicator variable taking the value 1 if the condition is true and
0 otherwise. In this model, volatility is non-stationary when λi = αi + βi + γi/2 ≥ 1.
When the GJR model is estimated, leverage effects are particularly significant for
the UK stock return, but not for other markets.8 However, introducing asymmetric
effects does not allow the conditional volatility persistence to diminish significantly,
since, as shown in Table 4, the volatility persistence is ranging between 0.945 and
0.989.

When turning to the GARCH model with Student-t distributed innovations, we
obtain that the parameter estimate for the degrees of freedom, ν, is rather large, at
about 13. The null hypothesis of normality is strongly rejected (the t-stat for 1/ν is
equal to 4.2). LR tests also indicate that the Student-t distribution improves signif-
icantly the model likelihood at the 1 percent level. Once again, however, assuming
Student-t residuals does not reduce the persistence in conditional volatility.

Last incorporating both the Student-t distribution and the asymmetric effect in
the model (Student-t GJR) does not improve the previous results significantly. The
null hypothesis of non-significant asymmetry parameters (γi = 0, i = 1, 2, 3) is not
rejected at the 5 percent level.

To conclude on one-regime GARCH models, the Student-t distribution appears
to be more appropriate than the Gaussian distribution for modelling innovations.
Besides, unlike some previous univariate results (such as Hamilton and Susmel, 1994)
the GARCH model is not rejected in favor of the GJR model. Over these various one-
regime models, the Schwartz criterion is maximized for the Student-t GARCH model.
It is worth noting that this model is not without drawbacks, since volatility persistence
is systematically very close to one, implying near non-stationary volatilities for each
stock return.

4.2 The multivariate MS models

In this subsection, we examine results obtained with various multivariate MS mod-
els. Summary statistics are reported in Table 6. Each model is estimated assuming
Gaussian or Student-t distributed innovations. Panel A is devoted to model with
regime-dependent correlations, whereas results for the model with correlations con-
stant across regimes are displayed in Panel B. In Table 7, we present LR tests for
various null hypotheses.

We first consider different specification tests in order to rank our models. The
LR test overwhelmingly rejects the Gaussian distribution in favor of the Student-t

8Unlike previous studies, we do not find GJR effects on the US market. This contrasting result
may be explained by the day-of-the-week issue. In fact, we also carried out estimates using other
days of the week, which have yielded a significant GJR effect.
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distribution. The degree of freedom, ν, is large (above 17) but in each case, 1/ν is
found to be significantly different from 0. Moreover, the LR test statistics as well
as the AIC and Schwartz criteria reject the Gaussian formulation in favor of the
Student-t one.

Another interesting feature would be to test the statistical significance of the
second regime. However this cannot be performed using a LR test, because parame-
ters associated with the second regime are not identified under the null hypothesis.
Therefore regularity conditions justifying the χ2 approximation to the LR test do not
hold. Hansen (1992, 1996) has proposed a LR test procedure that gets around this
problem. But, even for simple models, the computational burden can be important.
We thus report the usual LR test statistics as a descriptive summary of the fit of
the alternative models.9 The p-values we obtained are so tiny that there is little
doubt about the existence of a second regime. In particular, when comparing the
MS model with the constant-variance model, the quasi-LR test statistics are as high
as 155.6 and 106.1 for Gaussian and Student-t distributed innovations respectively.
Moreover as discussed later, estimated variances and covariances substantially differ
in each regime. We can therefore consider the addition of the second regime to be
economically significant.

Maximum-likelihood parameter estimates of the MS model with Student-t inno-
vations are reported in table 8. For aim of comparison, the first column reports
the parameter estimates of the one-regime constant-variance model. The conditional
mean and variance terms are very close to the unconditional means and variances
shown in Table 1. The conditional correlations are also very close to the unconditional
correlation coefficients reported in Table 2. The degree of freedom for the Student-t
distribution is equal to 8.5. All parameters are strongly significant. However, di-
agnostic tests indicate that there is serial correlation in the squared standardized
residuals.

The second column of Table 8 shows parameter estimates for the MS model.
Since conditional means are assumed to be regime-independent, they are close to
those displayed in the first column. The two regimes are strongly persistent since
the transition probabilities p and q are very large, at 0.991 and 0.990 respectively.
Both regimes would be expected to last on average for (1− p)−1 = 100 weeks. The
first regime is characterized by lower variances and lower correlations. Indeed, the
regime-1 variances are between 2 and 4 times the regime-0 variances. Moreover
correlation coefficients increase by about 0.2 from regime 0 to regime 1. For instance,
the conditional correlation between the DAX and FTSE returns is 0.46 during calm
periods and 0.67 during turbulent periods.

Last, column 3 reports parameter estimates for the MS model with correlations
constant across regimes. Estimates for conditional means and variances are almost
unchanged as compared to the MS model with correlations varying across regimes.
Conditional correlations are estimated to be close to the unconditional correlations
in Table 2. The LR test statistic for regime-independent correlations is equal to

9Using Monte Carlo experiments, Garcia (1998) has shown that the LR asymptotic distribution
approximates the empirical distribution very well, for some simple MS models. Ang and Bekaert
(1999) also use Monte Carlo simulations to find the small sample distribution of LR test statistics.
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17.9. Since it is distributed as a chi-square with 3 degrees of freedom, the null hy-
pothesis is strongly rejected at any usual significance level. In the MS model with
regime-independent correlations, estimated correlations are (0.42; 0.51; 0.55). The cor-
responding correlations in the MS model with correlations varying across regimes are
(0.34; 0.42; 0.46) in regime 0 and (0.53; 0.63; 0.67) in regime 1.

Summary statistics indicate that, at least for the DAX, residuals display het-
eroskedasticity. Therefore volatility persistence is shown to have two sources: (1)
persistence of regimes, which is modelled with MS model, and (2) within-regime
volatility clustering, a feature which is not incorporated in this model. Then MS-
GARCH models are well designed to deal with this problem.

4.3 The multivariate MS-GARCH model

We turn now to MS-GARCH model’s results. Summary statistics are displayed in
Table 6 and LR tests are reported in Table 7. First, with a LR test statistic equal to
17.8, the null hypothesis of a Gaussian distribution is strongly rejected at any usual
level.

Second, although this is not a formal test, the quasi-LR test statistics for the null
hypothesis of only one regime are so large (53.8 and 43.3 for Gaussian and Student-t
distributed innovations respectively) that we can confidently accept the existence of
a second regime.

Testing the significance of GARCH parameters gives mixed results. In effect,
according to LR tests, the MS model is rejected in favor of the MS-GARCH model,
at the 5 percent level. But the p-value is only 1.8% for the Gaussian model and
0.3% for the model with Student-t distribution innovations. Moreover the Schwartz
criterion clearly rejects the MS-GARCH model in favor of the MS model.

In Table 9, we present maximum likelihood parameter estimates of GARCH mod-
els with Student-t innovations. The first column reports estimates of the one-regime
GARCH model. All parameters of interest are significant. Results highlight a strong
volatility persistence, a common feature of GARCH models. Engle test statistics
indicate that standardized residuals are broadly homoskedastic.

The second column reports parameter estimates of the MS-GARCH model with
regime-dependent correlations. For the US, the high-volatility regime (regime 1)
displays more sensitivity to recent shocks (α0

1
< α1

1
) but less persistence (β0

1
> β1

1
)

than the low-volatility regime. This result has been already pointed out by Gray
(1996) for characterizing US interest-rate volatility. However, other stock markets
under study only partly display a similar pattern. Indeed, in Germany as well as in
the UK, volatility is strongly persistent within both regimes.

Further scrutiny of Table 9 shows that several volatility-equation parameters are
not significantly different from 0 in the MS-GARCH model. This is a rather dis-
appointing result, because it is then difficult to clearly characterize within-regime
volatility dynamics. More precisely, even if the effect of recent shocks (αk

i ) is generally
quite reasonable and close to previous findings (mainly in the US and in Germany),
it is systematically non significant. This result may be due to the large number of
parameters and/or to some multicolinearity effects.

15



The last column of Table 9 reports parameter estimates of the MS-GARCH model
with correlations constant across regimes. Some autoregressive parameters in volatil-
ity equations (βk

i ) markedly decrease as compared with the MS-GARCH model with
regime-dependent correlations. In particular, this is the case for the calm regime in
the US and Germany. Conditional correlations are very close to those obtained with
the MS model.

The LR test statistic for regime-independent correlations in the MS-GARCH
model is 13.7, with a p-value of 0.3%. In the MS-GARCH model with regime-
independent correlations, correlations are estimated to be (0.43; 0.52; 0.56). Assuming
regime-dependent correlations, the corresponding correlations are (0.26; 0.40; 0.51) in
regime 0 and (0.57; 0.62; 0.62) in regime 1. We note that estimated within-regime
correlations are very similar for MS models and MS-GARCH models.

4.4 The economic importance of switching models

4.4.1 Characterizing time-varying regime probabilities and correlations

At this stage, we get a further insight into the economic importance of switching
models, in particular by studying international correlations. Fig. 2 plots weekly
stock return series rit for each stock market. As in Fig. 1, beginning of 1992 and
1996 are marked with vertical lines. The S&P and the DAX appear more volatile
over the first and the last subperiod. When turning to the FTSE return, the three
subperiods display a similar pattern. In particular the second period does not appear
to be less volatile than the other ones, since the two largest returns occurred in April
and September 1992.

Fig. 3 contains plots of the ex-ante probabilities Pr [St = 0|It−1] and the smoothed
probabilities Pr [St = 0|IT ]. These probabilities are computed as derived in Gray
(1995), whose smoothing algorithm directly relates ex-ante probabilities and cor-
responding smoothed probabilities. Top panel of Fig. 3 plots ex-ante and smoothed
probabilities for the MS model. The high-volatility regime (regime 1) can be associ-
ated with three periods, ignoring the very beginning of the sample: (1) from end-1989
to mid-1991, (2) from beginning of 1997 to beginning of 1998 and (3) since the end
of 1998. The first of these periods (from October 1989 to May 1991) begins with the
mini-crash of October 13, 1989 in the US and also corresponds to the Kuwait crisis
from Iraq’s invasion on August 2, 1990 through the conclusion of the Gulf war on
March 3, 1991. The second period (April 1997-March 1998) is clearly driven by the
South-East Asian crisis, which actually started in June 1997. The last period (from
August 1998 to now) has been clearly initiated by the Russian crisis, which started
with the collapse of the bond market at the beginning of August. We also note a
short-lasting spike in September 1992 corresponding the EMS crisis, which implied a
strong increase in the FTSE volatility.

Bottom panel of Fig. 3 plots ex-ante probabilities and smoothed probabilities for
the MS-GARCH model. Although probabilities obtained using the MS and the MS-
GARCH models display a broadly similar pattern, some differences are worth noting.
First, considering ex-ante probabilities, the second half of 1988 is now considered as
a turbulent period. Moreover, the MS-GARCH model implies a much longer lasting
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high-volatility episode at the beginning of the 90s than the MS model. Indeed the
probability of being in regime 0 remains lower than 50% until April 1992, just after the
FTSE boom, when the UK entered the EMS. Last the low-volatility regime ended at
the end of 1996, almost one year before what was found with the MS model. Moreover
the Russian crisis in 1998 is no longer considered as a turbulent period.

Smoothed probabilities are even more clear-cut, since the whole period is charac-
terized with only two regime shifts. A first, turbulent, subperiod ends at the end of
1990, after the invasion of Kuwait by Iraq. The second shift occurred at the beginning
of 1996 more than one year before the South-East Asian crisis started. This is due to
the fact that the smoothed probability at date t is computed using information on the
whole sample. Therefore, as in the usual Kalman smoother, smoothed probabilities
seem to precede ex-ante probabilities.

Conditional correlations implied by the MS model are plotted in the left panel
of Fig. 4. For each stock market, we display correlations estimated using the MS
model with regime-dependent as well as regime-independent correlations. Since cor-
relations are assumed to be constant within regime, there are only two possible levels
of correlation and therefore the conditional correlation mimics the ex-ante regime
probabilities. However, unlike most previous tests, our test procedure is not based
on data-mining. Indeed our low-volatility and high-volatility regimes are determined
endogenously during the estimation. They have no need to be chosen beforehand.

Last an interesting feature offered by the MS-GARCH model is that the transition
from the low correlation to the high correlation is much more smoothed than with
the MS model (right panel of Fig. 4). For instance, the US-German correlation
decreased very gradually from 0.53 to 0.3 from the end of 1990 to the beginning of
1992. Conversely, with the MS model, the same change in correlation was attained in
less than two months.

4.4.2 Volatility-forecasting ability tests

It is interesting to compare the volatility-forecasting ability of the different models
studied. In particular this comparison can be seen as a test of over-parameterization
of switching models. Moreover we can measure the usefulness of switching models to
forecast the covariance matrix.

We adopt the methodology used, for instance, by Hamilton and Susmel (1994).
For a particular model, we compute a time series of conditional variances and covari-
ances over the sample. We then compare the conditional variance to the actual cor-
responding squared innovations and the conditional covariance to the cross-product
of the actual corresponding innovations. Subsequently we measure the following loss
functions:

RMSEij =

√√√√ 1

T

T∑
t=1

(
ε̂itε̂jt − ĥijt

)2
i, j = 1, ..., n

and

MAEij =
1

T

T∑
t=1

∣∣∣ε̂itε̂jt − ĥijt

∣∣∣
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where ε̂it = rit − r̄i, with r̄i =
1

T

∑T
t=1 rit and ĥijt is the ijth element of the estimated

conditional covariance matrix, Ĥt. Ĥt is defined by eq. (2) and (3) for the GARCH
model, and by eq. (12) for the MS and MS-GARCH models.

Table 10 reports results of in-sample one-period-ahead forecasts using the differ-
ent models studied. In Panel A, parameters are estimated over the whole sample, as
reported in Table 8 and Table 9, and forecasts are performed over the same sample
for each model. According to RMSE, the MS-GARCH with regime-dependent corre-
lations performs very well in forecasting S&P and DAX variances and the S&P-DAX
correlation. Conversely, the MS model appears to out-perform other models in fore-
casting the FTSE variance and the S&P-FTSE and DAX-FTSE correlations. Turning
to the MAE, results are less clear-cut, since the MS model with correlations constant
across regimes performs better in forecasting the S&P-FTSE and DAX-FTSE corre-
lations.

A second test examines the forecasting ability of various models when models are
estimated over the period from January 1988 to March 1998. Therefore parameters
are identified using only one episode of each regime. As shown in Panel B, in-sample
one-period-ahead forecasts give basically the same ranking as in Panel A.

Last but not least, Panel C reports out-of-sample one-period-ahead forecasts com-
puted over the period from April 1998 to December 1999. Parameter estimates are
estimated over the period from January 1988 to March 1998. According to RMSE,
the MS model with regime-dependent correlation clearly out-performs all other mod-
els in forecasting correlations. As before, MAE statistics do not allow to conclude in
favor of a specific model.

In summary, it is worth noting that these results are not indicative of any over-
fitting of MS and MS-GARCH models. Indeed, although a large number of parameters
have to be estimated for these models, out-of-sample forecasts are fairly good as
compared to one-regime models.

5 Conclusion

In this paper, we consider the relationship between international correlation and
stock-market turbulence. We assume that stock markets are driven by two regimes,
characterized by a low and a high volatility. We then estimate multivariate regime-
switching models and test the null hypothesis that correlations are constant across
regimes. The reference model is the standard multivariate GARCH model with con-
stant correlation. Two alternative regime-switching models are studied: a simple MS
model, in which variances are constant within regime, and a MS-GARCH model, in
which variances are modeled as GARCH processes.

Using weekly stock return series for the S&P, the DAX and the FTSE over the
period from January 1988 to December 1999, we find that MS and MS-GARCH spec-
ifications offer a better statistical fit to the data than standard multivariate GARCH
models. Turning to the hypothesized relationship between international correlation
and stock-market turbulence, we actually obtain that correlations are much higher
during the high-volatility regime than during the low-volatility regime. We perform
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a LR test which confirms that an increase in volatility is usually associated with an
increase in correlation. Broadly speaking, our sample can be split into three subpe-
riods corresponding to different levels of volatility: before 1992, stock markets faced
a high-volatility regime, associated in particular with the Gulf crisis; the second ag-
itated period started in 1997 and was characterized by the South-East Asian crisis
and the Russian crisis. The 1992-96 period is found to be a low-volatility regime.

Our test procedure improves previous tests based on a data-driven selection of
high- and low-volatility subperiods. Indeed these tests are shown to be biased be-
cause of the regime selection (Boyer, Gibson, and Loretan, 1997). Conversely, in the
approach developed in this paper, regimes are determined endogenously and are con-
sistent with the data generating process. Therefore, our test procedure does not suffer
from any selection bias.

Our work may be extended in two ways. First, the econometric model may be
improved to incorporate further statistical features of stock returns. As already in-
dicated, we did not succeed in introducing leverage effects in our models. Another
improvement on our Markov-switching models would be to allow transition proba-
bilities to be different across markets and/or to vary over time. Hamilton and Lin
(1996) incorporated the first extension and Gray (1996) incorporated the second one.
However, in a multivariate framework, such extensions would dramatically increase
the computational burden.

Second, our test for a regime-independent conditional correlation may be per-
formed for other groups of markets. In particular it would be interesting to assess
whether correlation between emerging-market returns really increased during the well-
documented Mexican (1994), South-East Asian (1997) and Russian (1998) crises.
Many papers focused on these episodes (for instance, Baig and Goldfajn, 1998, and
Forbes and Rigobon, 1999), but most of them considered unconditional correlations
computed over subperiods selected ex post and therefore incorporating all informa-
tion about past crises. In order to avoid a data-mining approach, we choose to develop
an unbiased test for a regime-independent conditional correlation, which is consistent
with the data generating process and thus free from selection bias.
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Appendix 1: Test of constant unconditional correlation matrix

A convenient way to test the null hypothesis of a constant unconditional correla-
tion matrix is to test for the equality of the correlation matrices computed over two
subsamples. Different test statistics have been proposed in the literature to perform
such a test. One of the most popular is the test developed by Jennrich (1970), based
on the normalized difference between the two correlation matrices.10 The test for
the equality of the correlation matrices, denoted R1 and R2, over two independent
subsamples of equal size n1 = n2 = n is based on the statistics:

χ2 =
1

2
tr
(
Z2
)
− diag (Z)′ S−1diag (Z)

where Z =
√

n

2
R−1 (R1 −R2); R = 1

2
(R1 +R2) is the average correlation matrix over

the two subsamples; S = (δij + rijr
ij) with R = (rij), R

−1 = (rij) and

δij =

{
1 if i = j
0 otherwise

and diag(X) denotes the diagonal of the square matrix X in a column form. The
Jennrich test statistic has an asymptotic chi-square distribution with p (p− 1) /2
degrees of freedom, if the correlation matrix is computed for p variables.

We note that the test statistic for constant correlation between two variables
(p = 2) is simply:

χ2 =
n

2

(r1 − r2)
2

(1− r2)2

where r1 and r2 are the estimated correlation over the two subsamples and r =
1

2
(r1 + r2).

10Box (1949) also proposed a statistic for testing the equality of two covariance matrices. His test
however can not be adapted for testing the equality of two correlation matrices.
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Table 1: Summary statistics on weekly stock returns

S&P DAX FTSE

Mean 0.274 0.281 0.210
Std dev. 1.920 2.627 2.034
Sk -0.528 -0.589 0.157
Sk* -5.371 -5.986 1.598
XKu 1.579 1.289 0.916
XKu* 8.027 6.549 4.658
J-B 93.276 78.730 24.252

Engle(4) 26.317** 52.298** 23.511**

Engle(12) 50.924** 83.626** 34.919**

LB(4) 6.219 7.222 4.496
LB(12) 27.155** 19.594 13.381

LBc(4) 5.639 4.603 4.117
LBc(12) 22.779* 14.986 13.280

Note: The sample period is January 1988 to December 1999, a total of 620 observations. Std
dev. is the standard deviation of returns. Sk (Sk*) and Xku (Xku*) represent the skewness (its
standardized version) and its analogues for excess kurtosis. The Jarque-Bera (J-B) statistic is
defined as (Sk*)2+(XKu*)2. It is distributed as a χ2

2 under the null hypothesis of normality.
Engle(K) is the TR2 test statistic for conditional heteroskedasticity obtained by regressing
squared returns on 4 (12) lags. LB(K) is the Ljung-Box test statistic for serial correlation.
LBc(K) is the Ljung-Box test statistic corrected for heteroskedasticity. These test statistics are
all distributed under the corresponding null hypothesis as a χK

2. * and ** indicate that the
statistic is significant at the 5% and 1% level respectively.



Table 2: Unconditional correlation matrices and variances over various subperiods

Correlation matrix Variance
S&P DAX FTSE

1988-1999
S&P 1.000 0.565 0.585 3.672
DAX 0.565 1.000 0.595 6.902
FTSE 0.585 0.595 1.000 4.115
1988-1991
S&P 1.000 0.296 0.509 4.034
DAX 0.296 1.000 0.468 7.112
FTSE 0.509 0.468 1.000 4.003
1992-1995
S&P 1.000 0.310 0.381 1.415
DAX 0.310 1.000 0.512 4.454
FTSE 0.381 0.512 1.000 3.151
1996-1999
S&P 1.000 0.626 0.627 5.263
DAX 0.626 1.000 0.702 9.566
FTSE 0.627 0.702 1.000 4.866

Note: Correlation matrices and variances of weekly stock returns for the S&P. the DAX and
the FTSE. The sample period is January 1988 to December 1999. a total of 620 observations.



Table 3: Jennrich test of equality of correlation matrices over various subperiods

Model

Degree
of

freedom

1988-1991
compared to
1992-1995

1992-1995
compared to
1995-1999

Statistics p-value Statistics p-value

S&P-DAX-FTSE 3 4.006 0.2608 20.802 0.0001

S&P DAX 1 0.024 0.8758 16.726 0.0000
S&P-FTSE 1 2.659 0.1030 11.202 0.0008
DAX-FTSE 1 0.358 0.5497 9.253 0.0024

Note: Correlation matrices of weekly stock returns for the S&P. the DAX and the FTSE are
computed over various subperiods. The Jennrich test statistic is asymptotically distributed as a
chi-square with a degree of freedom equal to the number of independent correlation
coefficients.



Table 4: Summary statistics for various one-regime GARCH models

No. of
parameters

(k)

Log-
likelihood

(L*)

AIC Schwartz
Degrees

of
freedom

(ν)

Persistence

(λi)

Constant variance

Gaussian innovations 9 -3813.44 -3822.44 -3842.37 - 0.000
0.000
0.000

Student-t innovations 10 -3782.59 -3792.59 -3814.73 8.54 0.000
(5.44) 0.000

0.000

GARCH(1.1)

Gaussian innovations 15 -3750.33 -3765.33 -3798.55 - 0.993
0.964
0.965

Student-t innovations 16 -3736.17 -3752.17 -3787.61 12.76 0.993
(4.18) 0.960

0.966

GJR(1.1)

Gaussian innovations 18 -3743.44 -3761.44 -3801.31 - 0.989
0.945
0.964

Student-t innovations 19 -3732.31 -3751.31 -3793.39 14.05 0.989
(3.77) 0.947

0.965

Note: The sample period is January 1988 to December 1999. a total of 620 observations. AIC
and Schwartz model selection criteria are computed as L*-k  and L*-0.5kln(T) respectively.
where k is the number of parameters and T the number of observations. The degree of
freedom parameter is the estimate of ν in eq. (5). for the Student-t distribution. The
persistence parameter (λi) is equal to 0 for the constant-variance model; it is defined by αi+βi

for the GARCH model and by αi+βi+γi/2 for the GJR model.



Table 5: LR test for various null hypotheses concerning one-regime GARCH models

Test
statistics

Degree of
freedom

(k)
p-value

Testing for distribution of innovations

Constant variance – Gaussian vs Student-t 61.70 1 4e-15
GARCH – Gaussian vs Student-t 28.32 1 1e-07
GJR – Gaussian vs Student-t 22.26 1 2e-06

Testing for variance specification

Gaussian - Constant variance vs GARCH 126.22 6 0.0000
Gaussian - GARCH vs GJR 13.78 3 0.0032
Student-t - Constant variance vs GARCH 92.83 6 0.0000
Student-t - GARCH vs GJR 7.72 3 0.0521

Note: The LR test statistics are defined as 2(L*-L0*). where L* and L0* are the log-likelihoods
under the alternative and null hypotheses respectively. Log-likelihoods are found in Table 4.
The degree of freedom. k. corresponds to the number of parameters constrained under the
null. The LR test statistics are distributed as a χp

2.



Table 6: Summary statistics for various two-regime MS models

No. of
parameters

Log-
likelihood

AIC Schwartz Degrees of
freedom

Persistence

(k) (L*) (ν) λi
0 λi

1

Regime-dependent correlation

Constant variance

Gaussian innovations 17 -3735.65 -3752.65 -3790.30 - 0.00 0.00
0.00 0.00
0.00 0.00

Student-t innovations 18 -3729.53 -3747.53 -3787.40 17.64 0.00 0.00
(2.83) 0.00 0.00

0.00 0.00

GARCH

Gaussian innovations 29 -3723.43 -3752.43 -3816.66 - 0.58 0.09
0.56 0.99
0.99 0.95

Student-t innovations 30 -3715.16 -3745.16 -3811.60 16.37 0.87 0.16
(3.17) 0.92 0.95

0.99 0.94

Constant correlation

Constant variance

Gaussian innovations 14 -3743.49 -3757.49 -3788.50 - 0.00 0.00
0.00 0.00
0.00 0.00

Student-t innovations 15 -3738.48 -3753.48 -3786.70 18.05 0.00 0.00
(2.70) 0.00 0.00

0.00 0.00

GARCH

Gaussian innovations 26 -3728.65 -3754.65 -3812.24 - 0.46 0.10
0.47 1.00
0.99 0.99

Student-t innovations 27 -3722.00 -3749.00 -3808.80 16.76 0.12 0.17
(3.13) 0.64 0.96

0.99 0.98

Note: The sample period is January 1988 to December 1999. a total of 620 observations. AIC
and Schwartz model selection criteria are computed as L*-k  and L*-0.5kln(T) respectively.
where k is the number of parameters and T the number of observations. The degree of
freedom parameter is the estimate of ν in eq. (5). for the Student-t distribution. The
persistence parameter (λi

k) for regime k. k=0.1. is equal to 0 for the constant-variance model;
it is defined by αi

k+βi
k for the GARCH model.



Table 7: LR test for various null hypotheses concerning two-regime MS models

Test
statistics

Degrees of
freedom

p-value

Testing for distribution of innovations

Regime-dependent correlation
Constant variance – Gaussian vs Student-t 12.24 1 0.0005
GARCH - Gaussian vs Student-t 16.54 1 0.0000

Constant correlation
Constant variance – Gaussian vs Student-t 10.02 1 0.0015
GARCH – Gaussian vs Student-t 13.30 1 0.0003

Testing for the two-regime model

Gaussian constant variance 155.58 1 -
Student-t constant variance 106.12 1 -
Gaussian GARCH 53.80 1 -
Student-t GARCH 42.02 1 -

Testing for variance specification

Regime-dependent correlation
Gaussian – Constant variance vs GARCH 24.44 12 0.0179
Student-t – Constant variance vs GARCH 28.74 12 0.0043

Constant correlation
Gaussian – Constant variance vs GARCH 29.68 12 0.0031
Student-t – Constant variance vs GARCH 32.96 12 0.0010

Testing for constant correlation

Gaussian constant variance model 15.67 3 0.0013
Student-t constant variance model 17.90 3 0.0005
Gaussian GARCH model 10.44 3 0.0152
Student-t GARCH model 13.68 3 0.0034

Note: The LR test statistics are defined as 2(L*-L0*). where L* and L0* are the log-likelihoods
under the alternative and null hypotheses respectively. Log-likelihoods are found in Tables 4
and 6. The degree of freedom. k. corresponds to the number of parameters constrained under
the null. The LR test statistics are distributed as a χp

2.



Table 8: Parameter estimates for one-regime and two-regime constant-variance models

One-regime
Two-regime with
regime-dependent

correlations

Two-regime with
regime-independent

correlations
Parameter Estimates Student Estimates Student Estimates Student

µ1 0.301 4.032 0.300 4.518 0.298 4.365
h1

0 3.607 14.526 2.102 13.424 2.262 12.536
h1

1 - 6.396 10.712 5.732 11.143

µ2 0.373 3.660 0.354 3.922 0.354 3.775
h2

0 6.849 13.764 3.798 12.947 4.064 11.577
h2

1 - 12.932 9.120 11.488 9.945

µ3 0.225 2.840 0.227 3.170 0.222 2.972
h3

0 3.976 14.813 2.803 11.996 3.100 10.868
h3

1 - 6.007 10.009 5.145 10.638

ν 8.540 6.141 17.635 2.831 18.049 2.697

ρ12
0 0.447 12.462 0.342 7.761 0.415 10.468

ρ12
1 - 0.528 8.133 -

ρ13
0 0.525 17.500 0.421 9.246 0.506 13.724

ρ13
1 - 0.628 10.743 -

ρ23
0 0.573 18.926 0.462 10.297 0.546 13.992

ρ23
1 - 0.673 10.892 -

p - 0.991 7.650 0.991 6.736
q - 0.990 4.788 0.988 4.799

Log Likelihood -3782.586 -3729.534 -3738.475

Statistics p-value Statistics p-value Statistics p-value

Engle(4) for r1t 41.969 0.00 4.329 0.36 8.585 0.07
Engle(4) for r2t 74.185 0.00 12.599 0.01 18.516 0.00
Engle(4) for r3t 12.836 0.01 3.929 0.42 4.827 0.31

LBc(4) for r1t 12.830 0.01 13.823 0.01 13.705 0.01
LBc(4) for r2t 0.435 0.98 0.989 0.91 0.906 0.92
LBc(4) for r3t 2.245 0.69 2.878 0.58 2.826 0.59

Note: The sample period is January 1988 to December 1999. a total of 620 observations.
Engle(4) is the TR2 test statistic for conditional heteroskedasticity obtained by regressing
squared returns on 4 lags. LBc(4) is the Ljung-Box test statistic corrected for
heteroskedasticity. These test statistics are distributed under the null hypothesis as a χ4

2.



Table 9: Parameter estimates for one-regime and two-regime GARCH models

One-regime Two-regime with regime-
dependent correlations

Two-regime with regime-
independent correlations

Parameter Estimates Student Estimates Student Estimates Student
µ1 0.287 4.298 0.268 4.261 0.286 4.349
ω1

0 0.035 1.559 0.200 1.429 1.336 1.747
α1

0 0.038 2.420 0.107 0.345 0.081 0.121
β1

0 0.955 55.941 0.764 3.193 0.037 0.006

ω1
1 - 4.340 2.193 3.622 2.982

α1
1 - 0.155 0.505 0.169 0.653

β1
1 - 0.005 0.000 0.004 0.000

µ2 0.371 4.000 0.337 3.715 0.354 3.870
ω2

0 0.293 2.398 0.322 1.363 1.711 0.414
α2

0 0.084 3.489 0.041 0.112 0.015 0.008
β2

0 0.876 34.771 0.875 3.223 0.620 0.356

ω2
1 - 0.540 1.537 0.297 1.798

α2
1 - 0.066 0.237 0.091 0.478

β2
1 - 0.881 3.487 0.864 5.216

µ3 0.235 3.183 0.216 2.902 0.231 3.051
ω3

0 0.136 2.019 0.015 0.964 0.000 0.002
α3

0 0.034 2.369 0.001 0.000 0.002 0.000
β3

0 0.932 37.390 0.988 2.241 0.992 1.480

ω 3
1 - 0.317 1.128 0.089 1.733

α3
1 - 0.002 0.001 0.003 0.002

β3
1 - 0.936 2.169 0.978 3.643

ν 12.760 4.204 16.369 3.172 16.758 3.135

ρ12
0 0.427 12.124 0.259 2.128 0.426 4.837

ρ12
1 - 0.570 5.492 -

ρ13
0 0.516 16.807 0.397 3.388 0.522 5.659

ρ13
1 - 0.621 4.342 -

ρ23
0 0.563 18.742 0.505 4.322 0.557 6.376

ρ23
1 - 0.617 4.492 -

p - 0.998 5.480 0.995 6.273
q - 0.999 0.412 0.999 2.844

Log Likelihood -3736.170 -3715.157 -3722.003

Statistics p-value Statistics p-value Statistics p-value

Engle(4) for r1t 8.424 0.08 3.983 0.41 7.740 0.10
Engle(4) for r2t 5.879 0.21 3.932 0.42 4.274 0.37
Engle(4) for r3t 4.516 0.34 7.835 0.10 8.764 0.07

LBc(4) for r1t 15.091 0.00 17.444 0.00 17.220 0.00
LBc(4) for r2t 1.143 0.89 1.187 0.88 1.078 0.90
LBc(4) for r3t 2.956 0.57 2.814 0.59 2.812 0.59
Note: The sample period is January 1988 to December 1999. a total of 620 observations.
Engle(4) is the TR2 test statistic for conditional heteroskedasticity obtained by regressing
squared returns on 4 lags. LBc(4) is the Ljung-Box test statistic corrected for
heteroskedasticity. These test statistics are distributed under the null hypothesis as a χ4

2.



Table 10: One-period-ahead forecasts of various models

one-regime
const.-var.

model

one-regime
GARCH

model

two-regime constant-
variance model

(MS)

two-regime GARCH model
(MS-GARCH)

regime-dep.
correlations

regime-indep.
correlations

regime-dep.
correlations

regime-indep.
correlations

Panel A: In sample - 1988-99
RMSE h1t 6.034 5.822 5.789 5.801 5.775 5.815

h2t 6.952 6.750 6.757 6.801 6.746 6.805
h3t 14.012 13.358 13.409 13.450 13.315 13.326
h12t 4.646 4.531 4.497 4.542 4.532 4.573
h13t 7.671 7.456 7.425 7.496 7.442 7.477
h23t 6.794 6.697 6.662 6.684 6.681 6.703

MAE h1t 3.721 3.526 3.529 3.481 3.490 3.455
h2t 7.330 6.916 6.994 6.864 6.749 6.751
h3t 4.113 4.032 4.016 3.969 3.996 3.978
h12t 3.983 3.752 3.824 3.755 3.725 3.731
h13t 2.881 2.756 2.789 2.739 2.783 2.766
h23t 4.367 4.198 4.211 4.118 4.137 4.124

Panel B: In sample - 1988-March 1998
RMSE h1t 5.039 4.925 4.902 4.904 4.880 4.881

h2t 5.033 4.977 4.966 4.968 4.977 4.983
h3t 9.441 9.044 9.011 9.009 8.989 8.989
h12t 3.627 3.553 3.523 3.549 3.557 3.574
h13t 5.684 5.563 5.541 5.561 5.561 5.565
h23t 6.419 6.337 6.304 6.315 6.321 6.336

MAE h1t 3.142 3.057 3.035 3.000 2.973 2.950
h2t 6.109 5.917 5.902 5.826 5.736 5.732
h3t 3.784 3.722 3.688 3.655 3.655 3.658
h12t 3.105 3.035 3.039 3.004 3.003 2.988
h13t 2.411 2.337 2.342 2.317 2.345 2.328
h23t 3.693 3.613 3.600 3.536 3.543 3.535

Panel C: Out-of-sample – April 1998-1999
RMSE h1t 10.158 9.555 9.528 9.636 9.663 9.741

h2t 13.663 13.070 13.181 13.370 13.140 13.292
h3t 28.891 27.319 27.693 27.873 27.307 27.344
h12t 8.499 8.220 8.157 8.339 8.248 8.343
h13t 14.692 14.150 14.147 14.391 14.209 14.203
h23t 8.597 8.371 8.359 8.408 8.367 8.371

MAE h1t 5.671 6.082 5.720 5.660 5.679 5.621
h2t 11.694 12.351 11.828 11.691 12.259 12.348
h3t 5.134 5.565 5.613 5.401 5.500 5.529
h12t 7.615 7.369 7.450 7.495 7.431 7.467
h13t 4.705 4.761 4.839 4.735 4.761 4.718
h23t 6.945 6.967 6.913 6.848 6.915 6.927

Note: The table reports root mean squared prediction errors (RMSE) and mean absolute errors
(MAE) for various models. In panel A. parameters are estimated over the 1988-99 period and
RMSE and MAE are computed over the same period. In panel B. parameters are estimated
over the period from January 1988 to March 1998 and RMSE and MAE are computed over
the same period. In panel C. parameters are estimated over the period from January 1988 to
March 1998 and RMSE and MAE are computed from April 1998 to December 1999.



Legends for Figures.

Fig. 1: This figure illustrates the evolution of unconditional variance and correlation across
markets. They are computed over sliding window of one year. Beginning of 1992 and 1995
are marked with vertical lines.

Fig. 2: This figure illustrates the evolution of weekly stock returns series for each stock
market. Beginning of 1992 and 1995 are marked with vertical lines.

Fig. 3: The top panel represents a time series of the ex-ante and smoothed probabilities that
stock returns are in low-volatility regime (regime 0) at time t according to the within-regime
constant-variance MS model. The bottom panel represents a time series of the ex-ante and
smoothed probabilities that stock returns are in low-volatility regime (regime 0) at time t
according to the within-regime MS-GARCH model.

Fig. 4: This figure contains a time series plot of conditional correlation across markets. In Fig.
4a. parameter estimates are based on the MS model. In Fig. 4b. parameter estimates are based
on the MS-GARCH model.
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